Newton's subsequent law expresses that power is corresponding to what exactly is needed for an object of consistent mass to change its speed. This is equivalent to that item's mass increased by its speed increase.
We use Newtons, kilograms, and meters each second squared as our default units, albeit any proper units for mass (grams, ounces, and so forth) or speed (miles each hour out of every second, millimeters per second², and so on) could unquestionably be utilized also - the estimation is the equivalent notwithstanding.
Hence, the appropriate answer will be 399,532.
Net Force = 399532
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.
Answer
Any force greater 490N
Explanation
The force required just to make an object slide over a rough horizontal surface is any force greater that the static friction which given by;

Given;

Hence;
F = 0.5 x 100 x 9.8
F = 490N.
We will only need the coefficient of kinetic friction if we were asked to find the force required to keep the object moving uniformly. Usually, the force needed to keep an object moving uniformly over a rough surface is lesser that which is needed to start its motion.
In this problem, we were only asked to find the minimum force required to make the object move which we have done.
Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N
The closer together they are the harder it is to hold on to because the magnetic field is stronger as it gets closer.
Answer:
D. The electromagnet's magnetic field is stronger close to it than far from it.