1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
15

A radar for tracking aircraft broadcasts a 12 GHz microwave beam from a 2.0-m-diameter circular radar antenna. From a wave persp

ective, the antenna is a circular aperture through which the microwaves diffract Part A) What is the diameter of the radar beam at a distance of 30 km? Part B) If the antenna emits 100 kW of power, what is the average microwave intensity at 30 km? (In W/m^2)
Physics
1 answer:
NISA [10]3 years ago
4 0

A) 750 m

First of all, let's find the wavelength of the microwave. We have

f=12GHz=12\cdot 10^9 Hz is the frequency

c=3.0\cdot 10^8 m/s is the speed of light

So the wavelength of the beam is

\lambda=\frac{c}{f}=\frac{3\cdot 10^8 m/s}{12\cdot 10^9 Hz}=0.025 m

Now we can use the formula of the single-slit diffraction to find the radius of aperture of the beam:

y=\frac{m\lambda D}{a}

where

m = 1 since we are interested only in the central fringe

D = 30 km = 30,000 m

a = 2.0 m is the aperture of the antenna (which corresponds to the width of the slit)

Substituting, we find

y=\frac{(1)(0.025 m)(30000 m)}{2.0 m}=375 m

and so, the diameter is

d=2y = 750 m

B) 0.23 W/m^2

First we calculate the area of the surface of the microwave at a distance of 30 km. Since the diameter of the circle is 750 m, the radius is

r=\frac{750 m}{2}=375 m

So the area is

A=\pi r^2 = \pi (375 m)^2=4.42\cdot 10^5 m^2

And since the power is

P=100 kW = 1\cdot 10^5 W

The average intensity is

I=\frac{P}{A}=\frac{1\cdot 10^5 W}{4.42\cdot 10^5 m^2}=0.23 W/m^2

You might be interested in
To practice Problem-Solving Strategy 27.1: Magnetic Forces. A particle with mass 1.81×10−3 kgkg and a charge of 1.22×10−8 CC has
Roman55 [17]

Answer:

The magnitude of the acceleration  is a = 0.33 m/s^2

The direction is - \r k i.e the negative direction of the z-axis

Explanation:

 From  the question we are that

       The mass of the particle m = 1.8*10^{-3} kg

         The charge on the particle is q = 1.22*10^{-8}C

         The velocity is \= v = (3.0*10^4 m/s ) j

        The the magnetic field is  \= B = (1.63T)\r i + (0.980T) \r j

The charge experienced  a force which is mathematically represented as

         

                    F = q (\= v * \= B)

    Substituting value

         F = 1.22*10^{-8} (( 3*10^4 ) \r j \ \ X \ \  ( 1.63 \r i  + 0.980 \r j )T)

            = 1.22 *10^{-8} ((3*10^4 * 1.63)(\r j \ \  X \ \  \r i) + (3*10^4 * 0.980) (\r j \ \ X \ \  \r  j))

            = (-5.966*10^4 N) \r k

Note :

           i \ \ X \ \ j = k \\\\j \ \  X  \ \ k = i\\\\k  \ \ X \ \ i = j\\\\j \ \ X \ \ i = -k \\\\k \ \  X  \ \ j = -i\\\\i  \ \ X \ \ k = - j\\

Now force is also mathematically represented as

        F = ma

Making a the subject

      a = \frac{F}{m}

   Substituting values

     a =\frac{(-5.966*10^4) \r k}{1.81*10^{-3}}

        = (-0.33m/s^2)\r k

        = 0.33m/s^2 * (- \r k)

6 0
4 years ago
The ice skaters partner liftes her up a distance of 1 m work done or not work done
SOVA2 [1]

Answer:

Work done.

Explanation:

The skater who lifts has to overcome the partner's weight. When lifted up by 1 meter, her potential energy increases by (mass)x(gravitational acceleration)x(1meter), which is the amount of work done.

(This all assumes lifting vertically and no other forces being part of the picture)

5 0
3 years ago
A marble is dropped from rest and falls for 2.3 seconds. Find its final velocity.
juin [17]

Answer:

23 m/s downward

__________________________________________________________

<em>Taking the downward direction as positive</em>

<u>We are given:</u>

Initial velocity of the marble (u) = 0 m/s

Time interval (t) = 2.3 seconds

Final velocity (v) = x m/s

<u>Solving for the Final velocity:</u>

<u>Acceleration of the Marble:</u>

We know that gravity will make the marble accelerate at a constant acceleration of 10 m/s

<u>Final velocity:</u>

v = u + at                                              [First equation of motion]

x = 0 + (10)(2.3)                                    [replacing the given values]

x = 23 m/s

Hence, after 2.3 seconds, the marble will move at a velocity of 23 m/s in the downward direction

4 0
3 years ago
How much energy is needed to perform 300 J of work?
4vir4ik [10]
I think this is the answer hope it helps

3 0
3 years ago
Derive the equation of motion of the block of mass m1 in terms of its displacement x. The friction between the block and the sur
Alenkasestr [34]

Answer:

the equivalent mass : m_e = m_1+m_2+\frac{I}{R^2}

the equation of the motion of the block of mass m_1 in terms of its displacement is = (m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

Explanation:

Let use m₁ to represent the mass of the block and m₂ to represent the mass of the cylinder

The radius of the cylinder  be = R

The distance between the center of the pulley to center of the block to be = x

Also, the angles of inclinations of the cylinder and the block with respect to the ground to be \phi and \beta respectively.

The velocity of the block to be = v

The equivalent mass of the system = m_e

In the terms of the equivalent mass, the kinetic energy of the system can be written as:

K.E = \frac{1}{2} m_ev^2       --------------- equation (1)

The angular velocity of the cylinder = \omega  :  &

The inertia of the cylinder about its center to be = I

The angular velocity of the cylinder can be written as:

v = \omega R

\omega =\frac{v}{R}

The kinetic energy of the system in terms of individual mass can be written as:

K.E = \frac{1}{2}m_1v^2+\frac{1}{2} m_2v^2+\frac{1}{2}I\omega^2

By replacing \omega with \frac{v}{R} ; we have:

K.E = \frac{1}{2}m_1v^2+\frac{1}{2} m_2v^2+\frac{1}{2}I(\frac{v}{R})^2

K.E = \frac{1}{2}(m_1+ m_2+ \frac{I}{R} )v^2   ------------------ equation (2)

Equating both equation (1) and (2); we have:

m_e = m_1+m_2+\frac{I}{R^2}

Therefore, the equivalent mass : m_e = m_1+m_2+\frac{I}{R^2}    which is read as;

The equivalent mass is equal to the mass of the block plus the mass of the cylinder plus the inertia by  the square of the radius.

The expression for the force acting on equivalent mass due to the block is as follows:

f_{block }=m_1gsin \beta

Also; The expression for the force acting on equivalent mass due to the cylinder is as follows:

f_{cylinder} = m_2gsin \phi

Equating the above both equations; we have the equation of motion of the  equivalent system to be

m_e \bar x = f_{cylinder}-f_{block}

which can be written as follows from the previous derivations

(m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

Finally; the equation of the motion of the block of mass m_1 in terms of its displacement is = (m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

8 0
3 years ago
Other questions:
  • A mysterious rocket-propelled object of mass 47.5kg is initially at rest in the middle of the horizontal, frictionless surface o
    8·1 answer
  • WHAT ARE THE NECESSARY CONDITIONS TO CREATE A WAVE?
    7·1 answer
  • arlene is to walk across a high wire strung horizontally between two buildings 10.0m apart. The sag in the rope when she is at t
    10·2 answers
  • Gravity is a force between any two objects with mass wht doesn’t a person feel a gravitational force between them herself and an
    5·1 answer
  • Jack is playing with a Newton's cradle. As he lifts one ball to position A and drops it, it impacts the other balls at position
    11·1 answer
  • 4. True or false: Ionic<br> Compounds do not form<br> molecules.
    6·2 answers
  • How can we take advantage of waste materials​
    14·1 answer
  • oscillating spring mass systems can be used to experimentally determine an unknown mass without using a mass balance. a student
    14·1 answer
  • Choose the incorrect statement about the proton: Group of answer choices The proton has the atomic mass of 1 amu The proton has
    15·1 answer
  • 1.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!