Hey there!
Label A: Sublimation
Label B: Condensation
Label C: Melting
Remember sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. Condensation is the conversion of a vapor or gas to a liquid. Melting is becoming liquefied by heat.
Hope this helps!
The overall charge of an atom is positive if the number of electrons is less than the number of protons. Electrons are negatively charged particles while protons are positively charged particles. If there are less electrons as compared to the number of protons in an atom, then naturally the overall charge of the atom would be positive since there are excess protons. Another case would be that the overall charge of an atom is negative if the number of electrons is greater than the number of protons. An atom having more electrons than the number of the protons present would lead to a negative value of the charge since there are excess electrons.
<h2>

=
![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
</h2>
Explanation:
- When an aqueous solution of a certain acid is prepared it is dissociated is as follows-
⇄ 
Here HA is a protonic acid such as acetic acid, 
- The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.
- The acid dissociation constant can be given by -
= ![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
- The reaction is can also be represented by Bronsted and lowry -
⇄ ![[H_3O^+] [A^-]](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%5BA%5E-%5D)
- Then the dissociation constant will be
= ![\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH_3O%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Here,
is the dissociation constant of an acid.
I would expect silane because all the rest have an overall dipole movement