Answer:
A) When the angle between the Force (F) and Displacement (x) is 0°, because, Work done (W) is directly proportional to the Cosine of the Angle between the Force applied and the resultant displacement of the subject.
W = F•x cos ∅
If ∅ = 0°,
W = F•x ===> Maximum Work Done.
If ∅ = 45°,
W = F•x/√2
If ∅ = 90°,
W = 0
If ∅ = 180°,
W = –F•x ===> Minimum Work Done.
Answer:
The angular acceleration is zero
Explanation:
When an object is in rotational motion, it has a certain angular velocity, which is the rate of displacement of its angular position.
This angular velocity can change or remain constant - this is given by the angular acceleration, which is:

where
is the change in angular velocity
is the time elapsed
Therefore, the angular acceleration is the rate of change of angular velocity.
In this problem, the bicycle rotates at a constant angular velocity of

This means that the change in angular velocity is zero:

And so, that the angular acceleration is zero:

Radars are frequently used to identify distance and speed, such as how far away an object is or how fast it is moving. <span>The </span>radar<span> device can then use the change in frequency to </span>determine the speed<span> at which the </span>car<span> is moving. In laser-</span>speed<span> guns, waves of light are </span>used<span> in place of radio waves.</span>
Answer:
e. Both the acceleration and net force on the car point inward.
Explanation:
If no net force acts on the car, the car must drive in a straight line, at constant speed.
As the acceleration is defined as the rate of change of the velocity vector, this means that it can produce either a change in the magnitude of the velocity (the speed) or in the direction.
In order to the car can follow a circular trajectory, it must be subjected to an acceleration, that must go inward, trying to take the car towards the center of the circle.
The net force that causes this acceleration, aims inward, and is called the centripetal force.
It is not a different type of force, it can be a friction force, a tension force, a normal force, etc., as needed.
Answer:
Δv = 12 m/s, but we are not given the direction, so there are really an infinite number of potential solutions.
Maximum initial speed is 40.6 m/s
Minimum initial speed is 16.6 m/s
Explanation:
Assume this is a NET impulse so we can ignore friction.
An impulse results in a change of momentum
The impulse applied was
p = Ft = 1400(6.0) = 8400 N•s
p = mΔv
Δv = 8400 / 700 = 12 m/s
If the impulse was applied in the direction the car was already moving, the initial velocity was
vi = 28.6 - 12 = 16.6 m/s
if the impulse was applied in the direction opposite of the original velocity, the initial velocity was
vi = 28.6 + 12 = 40.6 m/s
Other angles of Net force would result in various initial velocities.