Answer:
<h3>B. 19miles</h3>
Explanation:
If Freddy drives 4 miles east to his friend's house. He then travels 9 more miles east to the supermarket. Finally on his way back home he out of gas 6 miles after leaving the supermarket, the distance travel by fred will be the sup of all the distances he covered throughout the journey.
Distance covered by fred = 4miles + 9miles + 6miles
Distance covered by fred = 13miles + 6miles
Distance covered by fred = 19miles
<span>An example of a high energy electromagnetic wave is "X-Ray"
When car runs, it's chemical energy (gasoline) converts into mechanical energy
Temperature is the measure of hotness or coldness of the body, so when heat expose to a substance, it's degree of hotness increases & it's temperature increases
Hope this helps!
</span>
Answer: reaction force = -558N
Explanation:
w = f = 558N
since action force and reaction force are equal in magnitude and opposite in direction,
reaction force = -(f)
reaction force = -558N
if that helps.
Thank you for your question, what you say is true, the gravitational force exerted by the Earth on the Moon has to be equal to the centripetal force.
An interesting application of this principle is that it allows you to determine a relation between the period of an orbit and its size. Let us assume for simplicity the Moon's orbit as circular (it is not, but this is a good approximation for our purposes).
The gravitational acceleration that the Moon experience due to the gravitational attraction from the Earth is given by:
ag=G(MEarth+MMoon)/r2
Where G is the gravitational constant, M stands for mass, and r is the radius of the orbit. The centripetal acceleration is given by:
acentr=(4 pi2 r)/T2
Where T is the period. Since the two accelerations have to be equal, we obtain:
(4 pi2 r) /T2=G(MEarth+MMoon)/r2
Which implies:
r3/T2=G(MEarth+MMoon)/4 pi2=const.
This is the so-called third Kepler law, that states that the cube of the radius of the orbit is proportional to the square of the period.
This has interesting applications. In the Solar System, for example, if you know the period and the radius of one planet orbit, by knowing another planet's period you can determine its orbit radius. I hope that this answers your question.
Answer:




Explanation:
r = Radius
k = Coulomb constant = 
Electric field is given by

The charge is 

The charge is 
The charge inside will have the polarity changed

Outside the charge will be
