Answer:
True
Explanation: If this is a true or false question it is *T*
0.00032cm*4.02=1.2864 × 10^-3 in scientific notation.
At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
Answer:
No one is right
Explanation:
John Case:
The function
is defined between -1 and 1, So it is not possible obtain a value
greater.
In addition, if you move the function cosine a T Value, and T is the Period, the function take the same value due to the cosine is a periodic function.
Larry case:
Is you have
, the domain of this is [0,2].
it is equivalent to adding 1 to the domain of the
, and its mean that the function
, in general, is not greater than
.