Answer:


Explanation:
what is the smallest crater that each of these telescopes could resolve on our moon?
For moon ;
s = 3.8 × 10 ⁸ m
y = 1.22 λs/D
where;
λ = 400 nm = 400× 10 ⁻⁹
D = 2.4 m
The smallest crater for the hubble space is calculated as follows:


For Aceribo ;
y = 1.22 λs/D
where :
λ = 75 cm = 0.75 m
D = 305 m


Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.
Answer:
Yes
Explanation:
There are two types of interference possible when two waves meet at the same point:
- Constructive interference: this occurs when the two waves meet in phase, i.e. the crest (or the compression, in case of a longitudinale wave) meets with the crest (compression) of the other wave. In such a case, the amplitude of the resultant wave is twice that of the original wave.
- Destructive interferece: this occurs when the two waves meet in anti-phase, i.e. the crest (or the compression, in case of a longitudinal wave) meets with the trough (rarefaction) of the other wave. In this case, the amplitude of the resultant wave is zero, since the amplitudes of the two waves cancel out.
In this problem, we have a situation where the compression of one wave meets with the compression of the second wave, so we have constructive interference.
Answer:
x component 60.85 m
y component 101.031 m
Explanation:
We have given distance r = 118 km
Angle which makes from ground = 58.9°
(a) X component of distance is given by 
(b) Y component of distance is given by 
These are the x and y component of position vector
It's been a while since I've studied this, but my answers would be:
13. 5730 years. The half-life of a substance is the amount of time it takes for half of it to decay, and, according to the graph, half of the substance remained at 5730 years.
14. 10740 years. According to the graph, only 25% of the carbon remained after 10740 years.
15. 15 atoms. According to the graph, only 12.5% of the carbon remained after 16110 years. 12.5% of 120 atoms is 15 atoms.
16. 1600 atoms. According to the graph, if a sample of carbon is 10740 years old, only 25% of it remains. To find the original amount, multiply the current amount by (100% / 25%), which equals 4. So, 4. 400 atoms * 4 = 1600 atoms is the original amount.