Answer:
About 512 g.
Explanation:
We are given a sample of P₂Cl₅ that contains 179 grams of phosphorus, and we want to determine the grams of chlroine that is present.
Thus, we can convert from grams of phosphorus to moles of phosphorus, moles of phosphorus to moles of chlorine, and moles of chlorine to grams of chlorine.
From the formula, there are two moles of P for every five moles of Cl. The molecular weights of P and Cl are 30.97 g/mol and 35.45 g/mol, respectively. Hence:

In conclusion, there is about 512 grams of chlorine present in the sample.
Alternatively, we can mass percentages. The mass percent of phosphorus in P₂Cl₅ is:

Because there are 179 grams of phosphorus, the total amount of sample present is:

Therefore, the amount of chlorine present is 691.1 g - 179 g, or about 512 g, in agreement with our above answer.
Answer:
They would be to heavy and you would be really stiff
Explanation:
Answer:
C.
will precipitate out first
the percentage of
remaining = 12.86%
Explanation:
Given that:
A solution contains:
![[Ca^{2+}] = 0.0440 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%200.0440%20%5C%20M)
![[Ag^+] = 0.0940 \ M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%20%3D%200.0940%20%5C%20M)
From the list of options , Let find the dissociation of 

where;
Solubility product constant Ksp of
is 
Thus;
![Ksp = [Ag^+]^3[PO_4^{3-}]](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BAg%5E%2B%5D%5E3%5BPO_4%5E%7B3-%7D%5D)
replacing the known values in order to determine the unknown ; we have :
![8.89 \times 10 ^{-17} = (0.0940)^3[PO_4^{3-}]](https://tex.z-dn.net/?f=8.89%20%5Ctimes%2010%20%5E%7B-17%7D%20%20%3D%20%280.0940%29%5E3%5BPO_4%5E%7B3-%7D%5D)
![\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3} = [PO_4^{3-}]](https://tex.z-dn.net/?f=%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D%20%20%3D%20%5BPO_4%5E%7B3-%7D%5D)
![[PO_4^{3-}] =\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D)
![[PO_4^{3-}] =1.07 \times 10^{-13}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D1.07%20%5Ctimes%2010%5E%7B-13%7D)
The dissociation of 
The solubility product constant of
is 
The dissociation of
is :

Thus;
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = (0.0440)^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%3D%20%280.0440%29%5E3%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![\dfrac{2.07 \times 10^{-33} }{(0.0440)^3}= [PO_4^{3-}]^2](https://tex.z-dn.net/?f=%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D%3D%20%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![[PO_4^{3-}]^2 = \dfrac{2.07 \times 10^{-33} }{(0.0440)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D)
![[PO_4^{3-}]^2 = 2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%202.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] = \sqrt{2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%20%5Csqrt%7B2.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] =4.93 \times 10^{-15}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D4.93%20%5Ctimes%2010%5E%7B-15%7D)
Thus; the phosphate anion needed for precipitation is smaller i.e
in
than in

Therefore:
will precipitate out first
To determine the concentration of
when the second cation starts to precipitate ; we have :
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = [Ca^{2+}]^3 (1.07 \times 10^{-13})^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2)
![[Ca^{2+}]^3 = \dfrac{2.07 \times 10^{-33} }{(1.07 \times 10^{-13})^2}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D%20%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2%7D)
![[Ca^{2+}]^3 =1.808 \times 10^{-7}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D1.808%20%5Ctimes%2010%5E%7B-7%7D)
![[Ca^{2+}] =\sqrt[3]{1.808 \times 10^{-7}}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%5Csqrt%5B3%5D%7B1.808%20%5Ctimes%2010%5E%7B-7%7D%7D)
![[Ca^{2+}] =0.00566](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D0.00566)
This implies that when the second cation starts to precipitate ; the concentration of
in the solution is 0.00566
Therefore;
the percentage of
remaining = concentration remaining/initial concentration × 100%
the percentage of
remaining = 0.00566/0.0440 × 100%
the percentage of
remaining = 0.1286 × 100%
the percentage of
remaining = 12.86%
What is it that you’re asking for?