Reflection helps designers to learn from their experiences, to integrate and co-ordinate different aspects of a design situation, to judge the progress of the design process, to evaluate interactions with the design context, and to plan suitable future design activities.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
Crazy Guy what do uh mean ?