Can you be a bit more specific plz and that will let me identify the answer
Answer:
Given that;
Jello there, see explanstion for step by step solving.
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
Explanation:
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
See attachment for more clearity
Answer:
a) 42.08 ft/sec
b) 3366.33 ft³/sec
c) 0.235
d) 18.225 ft
e) 3.80 ft
Explanation:
Given:
b = 80ft
y1 = 1 ft
y2 = 10ft
a) Let's take the formula:

1 + 8f² = (20+1)²
= 8f² = 440
f² = 55
f = 7.416
For velocity of the faster moving flow, we have :
V1 = 42.08 ft/sec
b) the flow rate will be calculated as
Q = VA
VA = V1 * b *y1
= 42.08 * 80 * 1
= 3366.66 ft³/sec
c) The Froude number of the sub-critical flow.
V2.A2 = 3366.66
Where A2 = 80ft * 10ft
Solving for V2, we have:
= 4.208 ft/sec
Froude number, F2 =
F2 = 0.235
d)
= 18.225ft
e) for critical depth, we use :
= 3.80 ft
Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here thermodynamic equation that
energy equation that is

put here value with
turbine is insulated so q = 0
so here

solve we get
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW
Answer:
I forget the word for it, but probably the guys who set up the power lines in the city.
Explanation: