1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
3 years ago
11

What is a jack plane used for​

Engineering
1 answer:
kolezko [41]3 years ago
4 0

A jack plane is a general purpose woodworking bench plane, used for dressing timber down to the correct size in preparation for truing and/or edge jointing.

I hope this helps you :)

You might be interested in
the velocity of a particle is given by v=16t^2i+4t^3j+(5t+2k) m/s, where t is in seconds. if the particle is at the origin when
pshichka [43]

Answer:

80.16 m/s^2

at t=2 s

x=42.3 m

y=16 m

z=14 m

Explanation:

solution

The x,y,z components of the velocity are donated by the i,j,k vectors.

v_{x}=16t^{2}  \\v_{y}=4t^{3}\\v_{z}=5t+2

acceleration is a derivative of velocity with respect to time.

a_{x}=\frac{d}{dt} v_{x}=\frac{d}{dt}[16t^{2}]=32t\\a_{y}=\frac{d}{dt} v_{y}=\frac{d}{dt}[4t^{3}]=12t^{2} \\a_{z}=\frac{d}{dt} v_{z}=\frac{d}{dt}[5t+2]=5

evaluate acceleration at 2 seconds

a_{x} =32*2=64m/s^{2}\\ a_{y} =12*2^{2} =48m/s^{2}\\a_{z} =5m/s^{2}

the magnitude of the acceleration is the square root of the sum of the square of each component of the acceleration.

=\sqrt{a_{x}^2 +a_{y}^2+a_{z} ^2 } \\=\sqrt{64^2 +48^2+5 ^2 }\\=80.16m/s^2

position is the integral of velocity with respect to time position at a time can be found by taking by taking the definite intergral of each component.

x=\int\limits {v_{x} } \, dx=\int\limits^2_0 {{16t^2} \, dt=42.7m\\\\y=\int\limits {v_{y} } \, dx=\int\limits^2_0 {{4t^3} \, dt=16m\\\\\\\\\\z=\int\limits {v_{z} } \, dx=\int\limits^2_0 {{5t+2} \, dt=14m\\\\

3 0
3 years ago
Technician A says amperage cannot exist without both voltage and resistance. Technician B says if amperage is high, then you kno
Ivan

Answer:

Technician A

Explanation:

Ohms law:  I= E/R so rest resistance must be present along with E/potential difference.  Even if just wire shorted together there is resistance but very little.

Tech B: Again ohms law.  Current flow is directly proportional to the voltage and inversely  proportional to R (resistance or impedance).

8 0
3 years ago
The amplitudes of the displacement and acceleration of an unbalanced motor were measured to be 0.15 mm and 0.6*g, respectively.
ehidna [41]

Answer:

The speed of shaft is 1891.62 RPM.

Explanation:

given that

Amplitude A= 0.15 mm

Acceleration = 0.6 g

So

we can say that acceleration= 0.6 x 9.81

acceleration,a=5.88\ \frac{m}{s^2}

We know that

a=\omega ^2A

So now by putting the values

a=\omega ^2A

5.88=\omega ^2 \0.15\times 10^{-3}

\omega =198.09\ \frac{rad}{s}

We know that

  ω= 2πN/60

198.0=2πN/60

N=1891.62 RPM

So the speed of shaft is 1891.62 RPM.

                                               

       

4 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
99 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
qwelly [4]

Answer:

1. Can you tell me something about yourself?

2. What are you weaknesses?

3. If you would describe yourself in one word?

Explanation: Those questions above 1, 2, and 3 are not harmful to ask your client. Bit the last two 4 and 5 are very harmful, because you don't need to be all up in they business and you don't want to put a lot of pressure on your client.

Hope this helps☝️☝☝

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is the correct definition of mechanical energy?
    9·2 answers
  • WHAT IS A TOROID IN HYDRAULUCS?
    11·2 answers
  • A 3-phase induction motor with 4 poles is being driven at 45 Hz and is running in its normal operating range. When connected to
    12·1 answer
  • 10. True or False: You should select your mechanic before you experience vehicle failure.
    6·2 answers
  • In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.0
    8·1 answer
  • Plateau Creek carries 5.0 m^3 /s of water with a selenium (Se) concentration of 0.0015 mg/L. A farmer withdraws water at a certa
    12·1 answer
  • What is it that makes a battery rechargeable? How is it different from a regular battery?
    14·2 answers
  • PLS :(((( HELP HELPPPP
    13·1 answer
  • Which of the following is true regarding screw gauges and shank?
    5·1 answer
  • Contrast moral and immoral creativity and innovation<br>​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!