Answer:
Explanation:
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
r=distance between point of rotation to the ball center=L+\frac{d}{2} (d=diameter of ball)
Th-resold velocity is given by 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved




Answer:
0.08 N/C
Explanation:
Electric Field: This is defined as the force per unit charge exerted at a point. The expression for electric field is given as,
E = Kq/r².............................. Equation 1
Where E = Electric Field, q = Charge, k = proportionality constant, r = distance.
making q the subject of the equation,
q = Er²/k............................... Equation 2
Given: E = 2 N/C, r = 4 m,
Substitute into equation 2
q = 2(4)²/k
q = 32/k C.
When r is increased to 20 m,
E = k(32/k)/20²
E = 32/400
E = 0.08 N/C.
Hence the electric Field = 0.08 N/C
Answer:
A pipe open at both ends would have an antinode at each end and its length would be λ/ 2
The next such points would be λ and 3 λ / 2
The ratio of 522 / 348 is 1.5 so the harmonic at 348 is one wavelength and the next harmonic is 3 λ / 2 at 1 1/2 wavelengths
348 hz would occur at one wavelength
f λ = v = f L where the length of the pipe is one wavelength
if we use 331 as the speed of sound then
L = 331 / 348 = .95 m for the length of the pipe
1. 408.4 J
The work done by a gas is given by:

where
p is the gas pressure
is the change in volume of the gas
In this problem,
(atmospheric pressure)
is the change in volume
So, the work done is

2. 10170 J
The amount of heat added to the water to completely boil it is equal to the latent heat of vaporization:

where
m is the mass of the water
is the specific latent heat of vaporization
The initial volume of water is

and the water density is

So the water mass is

So, the amount of heat added to the water is

Answer:
The problem occurs with all spherical mirrors.
Spherical mirrors are practical up to about inches in diameter.
Reflecting telescopes use spherical mirrors for apertures up to about 4 ".
Larger aperture telescopes use parabolic mirrors to obtain sharp focus.