Answer:
Carbon atoms in graphite form alternating single and double bonds.
Explanation:
Answer:
The molecule has a bent geometry
Explanation:
Let us look again at the principles of VSEPR theory. The shape of a molecule depends on the number of electron pairs that surround the valence shell of the central atom in the molecule.
Lone pairs distort the molecular geometry away from what is expected on the basis of VSEPR theory.
The molecule described in the question has the form AEX2. Two substituents and one lone pair form three electron domains around the central atom. The expected geometry is trigonal planar but the observed molecular geometry is bent because of the lone pairs present.
good luck with that. I thought I had it, but it was not right.
Hello there!
Electronegativity is what determine's an atoms ability to attract electrons shared in a chemical bond.Ionization, atomic radius, and also <span> ionic radius both would not determine this as they wouldn't have any similar bond that would attract.
</span><span>
Your correct answer would be (option c)
</span><span>A. ionization
B. atomic radius
C. electronegativity
D. ionic radius
I hope this helps you!</span>