A cathode is the location in an electrolytic cell where reduction reactions take place.
An anode is the location in an electrolytic cell where oxidation reactions occur.
An electrolyte solution is any substance containing free ions that make the substance electrically conductive.
<span>An external electrical energy source like a battery or a transformer is used to drive the non-spontaneous reaction.</span>
Penurunan atau kehilangan massa otot bisa menimbulkan penurunan berat badan yang tidak direncanakan
This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more:
Answer:
For every 4 moles of NO created, 6 moles of H2O are created so the ratio is 4:6
Explanation:
You just need to balance the equation.
NH3 + O2 -> NO + H2O
1. I started with hydrogen; there's 3 on the left and 2 on the right. Multiply them together to find a number they both go into (3×2=6, but in this case 6 hydrogen on each side does not work so I doubled it so there is 12 hydrogen on each side).
This will bring you to this:
4NH3 + O2 -> NO + 6H2O
2. Now get equal amounts of nitrogen on each side. There's 4 nitrogen on the left side, and 1 on the right. Multiply the right by 4. Then you will have this:
4NH3 + O2 -> 4NO + 6H2O
3. Last thing you need to do is have the same amount of oxygen on both sides. On the left you have 2 and on the right you have 10. Get the left to 10 by multiplying it by 5.
Balanced: 4NH3 + 5O2 -> 4NO + 6H2O
In word form, for every reaction between 4 moles of ammonia and 5 moles of oxygen, 4 moles of nitric oxide and 6 moles of water will be created.
I hope this helps!
The correct answer is 7 I just took the test :)