Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
Explanation:
Electrical energy is:
E = IVt
E = 210 * 12 * 10\\\\\\E = 25200 J
Answer:
Explanation:
Let the velocity of deuteron be v then force on it in magnetic field
Bqv , B is magnetic field and q is charge on deuteron . This force will provide centripetal force for circular path so
mv² / r = Bqv m is mass of deuteron and r is radius of circular path
v = Bqr / m
(.5 x 1.6 x 10⁻¹⁹ x 55.6 x 10⁻² )/ 3.34 x 10⁻²⁷
= 13.31 x 10⁶ m /s
Answer: I am not sure if you wanted me to answer this or not.
Explanation:
Answer:Due to change in direction
Explanation:
Given
Initially train has traveled a 100 km in North and after exchanging some railroad cars, it traveled 100 in south.
The velocity of the train changes as it direction of motion changes. Velocity is the vector quantity which require direction and magnitude for its reperesentation.