1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
9

I will give brainliest if you sub and stay subbed to JD Outdoors & Gaming​

Physics
1 answer:
jek_recluse [69]3 years ago
5 0
First Stan txt (tomorrow by together) and stream freeze on YT Hybe labels !!!!!!!!!!!!!

You might be interested in
An inductor is connected to a 26.5 Hz power supply that produces a 41.2 V rms voltage. What minimum inductance is needed to keep
alexira [117]

Answer:

The minimum inductance needed is 2.78 H

Explanation:

Given;

frequency of the AC, f = 26.5 Hz

the root mean square voltage in the circuit, V_{rms} = 41.2 V

the maximum current in the circuit, I₀ = 126 mA

The root mean square current is given by;

I_{rms} = \frac{I_o}{\sqrt{2} } \\\\I_{rms}  = \frac{126*10^{-3}}{\sqrt{2} }\\\\I_{rms}  =0.0891 \ A

The inductive reactance is given by;

X_l = \frac{V_{rms}}{I_{rms}} \\\\X_l= \frac{41.2}{0.0891}\\\\X_l = 462.4 \ ohms

The minimum inductance needed is given by;

X_l = \omega L\\\\X_l = 2\pi  fL\\\\L = \frac{X_l}{2\pi f}\\\\L = \frac{462.4}{2\pi *26.5}\\\\L = 2.78 \ H

Therefore, the minimum inductance needed is 2.78 H

7 0
3 years ago
A hydraulic turbine is used to generate power by using the water in a dam. The elevation difference between the free surfaces up
Serjik [45]

Answer:

0.906

Explanation:

Let g = 9.81 m/s2. We can calculate the rate of change in potential energy when m = 201kg of water is falling down a distance of h = 131m per second

\dot{E_p} = \dot{m}gh = 201*9.81*131 = 258307 J/s (W) = 258.307 kW

So the efficiency of the water turbine is the ratio of output power over input power:

\frac{234}{258.307} = 0.906

3 0
3 years ago
A bicycle rider pushes a 13kg bicycle up a steep hill. the incline is 24 degree and the road is 275m long. the rider pushes the
Digiron [165]

Answer:

A. W = 6875.0 J.

B. W = -14264.6 J.

Explanation:

A. The work done by the rider can be calculated by using the following equation:

W_{r} = |F_{r}|*|d|*cos(\theta_{1})

Where:                

F_{r}: is the force done by the rider = 25 N

d: is the distance = 275 m

θ: is the angle between the applied force and the distance

Since the applied force is in the same direction of the motion, the angle is zero.

W_{r} = |F_{r}|*|d|*cos(0) = 25 N*275 m = 6875.0 J

Hence, the rider does a work of 6875.0 J on the bike.

B. The work done by the force of gravity on the bike is the following:

W_{g} = |F_{g}|*|d|*cos(\theta_{2})  

The force of gravity is given by the weight of the bike.

F_{g} = -mgsin(24)     

And the angle between the force of gravity and the direction of motion is 180°.

W_{g} = |mgsin(24)|*|d|*cos(\theta_{2})  

W_{g} = 13 kg*9.81 m/s^{2}*sin(24)*275 m*cos(180) = -14264.6 J  

The minus sign is because the force of gravity is in the opposite direction to the motion direction.

Therefore, the magnitude of the work done by the force of gravity on the bike is 14264.6 J.  

I hope it helps you!                                                                                          

3 0
2 years ago
A silver wire with resistivity 1.59 × 10-8 Ω-m carries a current density of 4.0 A/mm2, What is the magnitude of the electric fie
Nat2105 [25]

Answer:

Electric field, E = 0.064 V/m

Explanation:

It is given that,

Resistivity of silver wire, \rho=1.59\times 10^{-8}\ \Omega-m

Current density of the wire, J=4\ A/mm^2=4\times 10^6\ A/m^2

We need to find the magnitude of the electric field inside the wire. The relationship between electric field and the current density is given by :

E=J\times \rho

E=4\times 10^6\times 1.59\times 10^{-8}

E = 0.0636 V/m

or

E = 0.064 V/m

So, the magnitude of electric field inside the wire is 0.064 V/m. Hence, this is the required solution.

6 0
2 years ago
A 73-kg Norwegian olympian ski champion is going down a hill sloped at 39 ◦ . The coefficient of kinetic friction between the sk
bazaltina [42]

Answer:

Explanation:

net force on the skier = mg sin 39 - μ mg cos39

mg ( sin39 - μ cos39 )

= 73 x 9.8 ( .629 - .116)

= 367 N

impulse = net force x time = change in momentum .

= 367 x 5 = 1835 kg m /s

velocity of the skier after 5 s = 1835 / 73

= 25.13 m /s

b )

net force becomes zero

mg ( sin39 - μ cos39 ) = 0

μ = tan39

= .81

c )

net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s

so he will have speed of 25.13 m /s after 5 s .

5 0
2 years ago
Other questions:
  • Mirage is due to...
    10·1 answer
  • A train travels due south at 25 m/s (relative to the ground) in a rain that is blown toward the south by the wind. The path of e
    14·1 answer
  • A 7.5-cmcm-diameter horizontal pipe gradually narrows to 4.5 cmcm . When water flows through this pipe at a certain rate, the ga
    9·1 answer
  • Which wave has a higher frequency than microwaves but lower frequency than UV waves?
    10·1 answer
  • The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the part
    10·1 answer
  • The Nile river excellent for. what
    11·2 answers
  • Thiết kế mạch điện tử sử dụng chân ngõ ra (I/O) của arduino UNO để lái relay 12VDC/500mA sao cho chân Arduino xuất ra tín hiệu 5
    13·1 answer
  • Explain how climbing a mountain is similar to hiking from the equator to one of the poles
    5·2 answers
  • a current of 180 mini amphere passes through a conductor for 5minute calculate the quantity of electricity transported​
    10·1 answer
  • Two objects are placed on a scale so that it balances. One object weighs 5 N and is placed 0.5 m from the fulcrum of the scale.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!