Answer:
57300 N
Explanation:
The container has a mass of 5300 kg, the weight of the container is:
f = m * a
w = m * g
w = 5300 * 9.81 = 52000 N
However this container was moving with more acceleration, so dynamic loads appear.
w' = m * (g + a)
w' = 5300 * (9.81 + 1) = 57300 N
The rating for the cable was 50000 N
The maximum load was exceeded by:
57300 / 50000 - 1 = 14.6%
Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.
Answer:
d) 2Fr
Explanation:
We know that the work done in moving the charge from the right side to the left side in the k shell is W = ∫Fdr from r = +r to -r. F = force of attraction between nucleus and electron on k shell. F = qq'/4πε₀r² where q =charge on electron in k shell -e and q' = charge on nucleus = +e. So, F = -e × +e/4πε₀r² = -e²/4πε₀r².
We now evaluate the integral from r = +r to -r
W = ∫Fdr
= ∫(-e²/4πε₀r²)dr
= -∫e²dr/4πε₀r²
= -e²/4πε₀∫dr/r²
= -e²/4πε₀ × -[1/r] from r = +r to -r
W = e²/4πε₀[1/-r - 1/+r] = e²/4πε₀[-2/r} = -2e²/4πε₀r.
Since F = -e²/4πε₀r², Fr = = -e²/4πε₀r² × r = = -e²/4πε₀r and 2Fr = -2e²/4πε₀r.
So W = -2e²/4πε₀r = 2Fr.
So, the amount of work done to bring an electron (q = −e) from right side of hydrogen nucleus to left side in the k shell is W = 2Fr
Answer:
The answer is "The object's speed relative to S can be greater than or less than its speed relative to S', depending on the actual values."
Explanation:
The S' frame and the object are moving in a positive direction. The object is moving with respect to the S frame so the S frame the rest frame
take the velocity of the object with respect to the rest frame as v and the velocity of the S' frame with respect S frame as v2
relative velocity of the object to the S' frame would be
Vrel = v2- v
This means the Vrel of the object with respect to the S' frame is less than the Vrel of the object with respect to the S frame
However is the S' velocity is greater than that of the object then the Vrel of the object with respect to the S' frame is greater than the Vrel of the object with respect to the S frame.
This would mean the second option is the answer, the relative speed of the object depends on the actual values.
Each capacitor carry the same charge 'q'.
Discussion:
The voltage from the battery is distributed equally across all of the capacitors when they are linked in series. The three identical capacitors' combined voltage is computed as follows:
= V₁ +V₂ +V₃
This voltage may also be calculated using capacitance and charge;
V = Q/ C
= V₁ +V₂ +V₃
Provided that the total charge is 'q', hence the total voltage can be expressed as:
= (Q/C₁) + (Q/C₂) + (Q/C₃) = Q(1/C₁ +1/C₂ +1/C₃)
Therefore from the above explanation, it is concluded that each and every capacitor carry same charge 'q'.
Learn more about the capacitor here:
brainly.com/question/17176550
#SPJ4