Answer:
a) 2.4 mm
b) 1.2 mm
c) 1.2 mm
Explanation:
To find the widths of the maxima you use the diffraction condition for destructive interference, given by the following formula:

a: width of the slit
λ: wavelength
m: order of the minimum
for little angles you have:

y: height of the mth minimum
a) the width of the central maximum is 2*y for m=1:

b) the width of first maximum is y2-y1:
![w=y_2-y_1=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[2-1]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_2-y_1%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B2-1%5D%3D1.2mm)
c) and for the second maximum:
![w=y_3-y_2=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[3-2]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_3-y_2%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B3-2%5D%3D1.2mm)
Answer:
Let d be the density of fluid.
So , Initial reading of balance, F1 =30dg N
After the level reaches 50cm^3
Final reading of balance , F2 =50dg N
Given that difference between final and initial reading is 30g
i.e, F2 −F1
=30 g
⟹50dg−30dg=30g
⟹20dg=30g
⟹d=30g/20g
⟹d=1.5g/cm^3
So, density of fluid is 1.5g/cm^3
Answer:
A. A line can be drawn from the planet to the sun that sweeps out equal areas in equal times
Explanation:
This is exactly what Kepler's second law of planetary motion states:
"the segment joining the sun with the center of each planet sweeps out equal areas in equal time"
This law basically tells how the speed of a planet orbiting the sun changes during its revolution. In fact, we have that:
- when a planet is closer to the Sun, it will orbit faster
- when a planet is farther from the Sun, it will orbit slower
Answer:
It has been converted into thermal energy due to friction
Explanation:
According to the law of conservation of energy, energy cannot be created nor destroyed, but only transformed from one form into another.
Applied to this problem, it means that the total initial energy of the spring-toy system must be conserved.
Therefore:
- At the beginning, the total energy stored in the spring is 10 J
- After the toy is released, the total energy must still be 10 J.
In reality, we are told that the kinetic energy of the car is only 8 J. The other 2 J have not been destroyed, but they have been converted into thermal energy, due to the presence of frictional forces that act against the motion of the toy car.
Answer:
because potentil energy is redy to go but its bound up
And kinetic energy is in motion
Explanation: