<h3>
Answer:</h3>
Anion present- Iodide ion (I⁻)
Net ionic equation- Ag⁺(aq) + I⁻(aq) → AgI(s)
<h3>
Explanation:</h3>
In order to answer the question, we need to have an understanding of insoluble salts or precipitates formed by silver metal.
Additionally we need to know the color of the precipitates.
Some of insoluble salts of silver and their color include;
- Silver chloride (AgCl) - white color
- Silver bromide (AgBr)- Pale cream color
- Silver Iodide (AgI) - Yellow color
- Silver hydroxide (Ag(OH)- Brown color
With that information we can identify the precipitate of silver formed and identify the anion present in the sample.
- The color of the precipitate formed upon addition of AgNO₃ is yellow, this means the precipitate formed was AgI.
- Therefore, the anion that was present in the sample was iodide ion (I⁻).
- Thus, the corresponding net ionic equation will be;
Ag⁺(aq) + I⁻(aq) → AgI(s)
Answer:
a compound
Explanation:
A molecule with multiple atoms is compound like water it's made up of 1 oxygen and two hydrogen.
Answer:
Silver Acetate would be the Limiting Reagent.
Explanation:
The balance chemical equation for the given double displacement reaction is as;
HCl + AgC₂H₃O₂ → AgCl + HC₂H₃O₂
Step 1: <u>Calculate Moles of Starting Materials:</u>
Moles of HCl:
Moles = Mass / M.Mass
Moles = 72.9 g / 36.46
Moles = 1.99 moles
Moles of AgC₂H₃O₂:
Moles = 150 g / 166.91 g/mol
Moles = 0.898 moles
Step 2: <u>Find out Limiting reagent as:</u>
According to balance chemical equation.
1 mole of HCl reacts with = 1 mole of AgC₂H₃O₂
So,
1.99 moles of HCl will react with = X moles of AgC₂H₃O₂
Solving for X,
X = 1.99 mol × 1 mol / 1 mol
X = 1.99 mol of AgC₂H₃O₂
Hence, to completely consume 1.99 moles of Hydrochloric acid we will require 1.99 moles of Silver Acetate, But, we are provided with only 0.898 moles of Silver Acetate. This means Silver Acetate will consume first in the reaction therefore, it is the LIMITING REAGENT.
<span>The metalloids; boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po) and astatine (At) are the elements found along the step like line between metals and non-metals of the periodic table.</span>