1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
6

For some transformation having kinetics that obey the Avrami equation , the parameter n is known to have a value of 1.1. If, aft

er 114 s, the reaction is 50% complete, how long (total time) will it take the transformation to go to 87% completion
y = 1 - exp(-kt^n)
Engineering
1 answer:
ivanzaharov [21]3 years ago
7 0

Answer:

total time  = 304.21 s

Explanation:

given data

y = 50% = 0.5

n = 1.1

t = 114 s

y = 1 - exp(-kt^n)

solution

first we get here k value by given equation

y = 1 - e^{(-kt^n)}   ...........1    

put here value and we get

0.5 = 1 - e^{(-k(114)^{1.1})}    

solve it we get

k = 0.003786  = 37.86 × 10^{4}

so here

y = 1 - e^{(-kt^n)}

1 - y  =  e^{(-kt^n)}

take ln both side

ln(1-y) = -k × t^n  

so

t = \sqrt[n]{-\frac{ln(1-y)}{k}}    .............2

now we will put the value of y = 87% in equation  with k and find out t

t = \sqrt[1.1]{-\frac{ln(1-0.87)}{37.86*10^{-4}}}

total time  = 304.21 s

You might be interested in
The design for a new cementless hip implant is to be studied using an instrumented implant and a fixed simulated femur.
OlgaM077 [116]

Answer:

a) the velocity of the implant immediately after impact is 20 m/s

b) the average resistance of the implant is 40000 N

Explanation:

a) The impulse momentum is:

mv1 + ∑Imp(1---->2) = mv2

According the exercise:

v1=0

∑Imp(1---->2) = F(t2-t1)

m=0.2 kg

Replacing:

0+F(t_{2} -t_{1} )=0.2v_{2}

if F=2 kN and t2-t1=2x10^-3 s. Replacing

0+2x10^{-3} (2x10^{-3} )=0.2v_{2} \\v_{2} =\frac{4}{0.2} =20m/s

b) Work and energy in the system is:

T2 - U(2----->3) = T3

where T2 and T3 are the kinetic energy and U(2----->3) is the work.

T_{2} =\frac{1}{2} mv_{2}^{2}  \\T_{3} =0\\U_{2---3} =-F_{res} x

Replacing:

\frac{1}{2} *0.2*20^{2} -F_{res} *0.001=0\\F_{res} =40000N

3 0
3 years ago
Find the mathematical equation for SF distribution and BM diagram for the beam shown in figure 1.​
Novosadov [1.4K]

Answer:

i) SF: v(x) = \frac{(w_0* x )^2}{2L}

ii) BM : = \frac{(w_0*x)^3}{6L}

Explanation:

Let's take,

\frac{y}{w_0} = \frac{x}{L}

Making y the subject of formula, we have :

y = \frac{x}{L} * w_0

For shear force (SF), we have:

This is the area of the diagram.

v(x) = \frac{1}{2} * y = \frac{1}{2} * \frac{x}{L} * w_0

= \frac{(w_0* x )^2}{2L}

The shear force equation =

v(x) = \frac{(w_0* x )^2}{2L}

For bending moment (BM):

BM = v(x) * \frac{x}{3}

= \frac{(w_0* x )^2}{2L}  * \frac{x}{3}

= \frac{(w_0*x)^3}{6L}

The bending moment equation =

= \frac{(w_0*x)^3}{6L}

5 0
4 years ago
A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut for the s
Xelga [282]

Answer:

See explanation

Explanation:

Given The bar is square and has a hot-rolled finish. The loading is fully reversed bending.

Tensile Strength

Sut: 600 MPa

Maximum temperature

Tmax: 500 °C

Bar side dimension

b: 150 mm

Alternating stress

σa: 100 MPa

Reliability

R: 0.999 Note 1.

Assumptions Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

Solution See Excel file Ex06-01.xls.

1 Since no endurance-limit or fatigue strength information is given, we will estimate S'e based on the ultimate tensile strength using equation 6.5a.

S'e: 300 MPa = 0.5 * Sut

2 The loading is bending so the load factor from equation 6.7a is

Cload: 1

3 The part size is greater than the test specimen and the part is not round, so an equivalent diameter based on its 95% stressed area must be determined and used to find the size factor. For a rectangular section in nonrotating bending, the A95 area is defined in Figure 6-25c and the equivalent diameter is found from equation 6.7d

A95: 1125 mm2 = 0.05 * b * b Note 2.

dequiv: 121.2 mm = SQRT(A95val / 0.0766)

and the size factor is found for this equivalent diameter from equation 6.7b, to be

Csize: 0.747 = 1.189 * dequiv^-0.097

4 The surface factor is found from equation 6.7e and the data in Table 6-3 for the specified hot-rolled finish.

Table 6-3 constants

A: 57.7

b: -0.718 Note 3.

Csurf: 0.584 = Acoeff * Sut^bCoeff

5 The temperature factor is found from equation 6.7f :

Ctemp: 0.710 = 1 - 0.0058 * (Tmax - 450)

6 The reliability factor is taken from Table 6-4 for R = 0.999 and is

Creliab: 0.753

7 The corrected endurance limit Se can now be calculated from equation 6.6:

Se: 69.94 MPa = Cload * Csize * Csurf * Ctemp *

Creliab * Sprme

Let

Se: 70 MPa

8 To create the S-N diagram, we also need a value for the estimated strength Sm at 103 cycles based on equation 6.9 for bending loading.

Sm: 540 MPa = 0.9 * Sut

9 The estimated S-N diagram is shown in Figure 6-34 with the above values of Sm and Se. The expressions of the two lines are found from equations 6.10a through 6.10c assuming that Se begins at 106 cycles.

b: -0.2958 Note 4.

a: 4165.7

Plotting Sn as a function of N from equation 6.10a

N Sn (MPa)

1000 540 =aa*B73^bb

2000 440

4000 358

8000 292

16000 238

32000 194

64000 158

128000 129

256000 105

512000 85

1000000 70

FIGURE 6-34. S-N Diagram and Alternating Stress Line Showing Failure Point

10 The number of cycles of life for any alternating stress level can now be found from equation 6.10a by replacing σa for Sn.

At N = 103 cycles,

Sn3: 540 MPa = aa * 1000^bb

At N = 106 cycles,

Sn6: 70 MPa = aa * 1000000^bb

The figure above shows the intersection of the alternating stress line (σa = 100 MPa) with the failure line at N = 3.0 x 105 cycles.

8 0
3 years ago
On the position time curve, if the slope of a tangent at a point is positive, that means:
Gnoma [55]

Answer:

  C. the object is moving forward

Explanation:

A positive slope means position is increasing when time is increasing. Generally, increasing position is "moving forward."

7 0
3 years ago
Read 2 more answers
Metal wireways are sheet metal troughs with _____________ for housing and protecting electrical conductors and cable.
levacccp [35]

Answer:

Metal wireways are sheet metal "U"s with removable housing for protecting electrical equipment, wires, and cables.

Explanation:

These are especially used to run wire in manufacturing environments.

5 0
2 years ago
Other questions:
  • The evaporator section of a refrigeration unit consists of thin-walled, 10-mm-diameter tubes through which refrigerant passes at
    7·1 answer
  • A compression ignition engine when tested gave an indicator card having area 3250mm^2 and length 73mm. The calibration factor wa
    10·1 answer
  • A seawall with an opening is used to dampen the tidal influence in a coastal area (and limit erosion). The seawall is 2.5 m long
    11·1 answer
  • The air standard efficiency ofan Otto cycle compared to diesel cycle for thie given compression ratio is: (a) same (b) less (c)
    12·1 answer
  • A mechanical system comprises three subsystems in series with reliabilities of 98, 96, and 94 percent. What is the overall relia
    10·1 answer
  • Which of the following tells the computer wha to do
    12·1 answer
  • Which of the following is an example of a social need?
    5·1 answer
  • Identify the following formulas:
    15·1 answer
  • What can be used to measure the alcohol content in gasoline? A. Graduated cylinder B. Electronic tester C. Scan tool D. Either a
    5·1 answer
  • Please answer i dont understand and dont know the answer​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!