Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
Answer:
1. ionic bonds
2. metallic bonds
3. share
4. metal
5. non-metal
6. metals
7. NaCl ( sodium chloride )
8. CO2 ( carbon dioxide )
9. Cu ( copper )
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
This answer is based on the electron configuration.
And you can use Aufbau's rule to predict the atomic number of the next elements.
Radon, Rn is the element number 86.
Following Aufbau's rules, the electron configuration of Rn is: [Xe] 6s2 4f14 5d10 6p6. This means that you are suming 2 + 14 + 10 + 6 = 32 electrons with respect to the element Xe.
You can verity that the atomic number of Xe is 54, so when you add 32 you get 54 + 32 = 86, which is the atomic number of Rn.
Again, as per Aufbau's rules, the next element of the same group or period is when the 6 electrons of the 7p orbital are filled. For that, they have to pass 32 elements whose orbitals are:
7s2 5f14 6d10 7p6: count the electrons added: 2 + 14 + 10 + 6 = 32, and that is why the next element wil have atomic number 86 + 32 = 118.
Now, when you go for a new series, you find a new type of orbital, the g orbital, for which the model predict there are 18 electrons to fill.
So the next element of the group will have ; 2 + 18 + 14 + 10 + 6 = 50 electrons, which means that the atomic number of this, not yet discovered element, has atomic number 118 + 50 = 168.
By the way the element with atomic number 118 was already discovdered at its symbol is Og. You can search that information in internet.
Answers: 118 and 168
Answer:
Moles = Molecules / (6.0221415 x 10^23)
Explanation:
Explanation:
The given data is as follows.
Mass of antimony = 19.75 g
Molar mass of Sb = 121.76 g/mol
Therefore, calculate number of moles of Sb as follows.
Moles of Sb = 
= 
= 0.162 mol
Mass of oxygen given is 6.5 g and molar mass of oxygen is 16 g/mol. Hence, moles of oxygen will be calculated as follows.
Moles of oxygen = 
= 
= 0.406 mol
Hence, ratio of moles of Sb and O will be as follows
Sb : O
1 : 2.5
We multiply both the ratio by 2 in order to get a whole number. Therefore, the ratio will be 2 : 5.
Thus, we can conclude that the empirical formula of the given oxide is
.