The color emitted be larger atoms is lower in energy then the light emitted by smaller atoms
Answer:
2.11 g hydrobromic acid (correct to 3SF)
Explanation:
Molecular formula of hydrobromic acid = C2H5BrO2
mass of C2H5BrO2 = 140.96g
Beginning with what we're given, 9.03*10^21 we then make a conversion by using Avegadro's number which is 6.02*10^23 per mole (Oct. 23 at 6:02 am is national mole day :) Then, we need to convert out of moles, 140.96g hydrombromic acid per mole.
It looks like this:
9.03*10^21 molecules • (1 mol C2H5BrO2 / 6.02*10^23 molecules) • (140g C2H5BrO2 / 1 mol) = 2.1144 g C2H5BrO2
Answer:
- The molarity of the student's sodium hydroxide solution is 0.0219 M
Explanation:
<u>1) Chemical reaction.</u>
a) Kind of reaction: neutralization
b) General form: acid + base → salt + water
c) Word equation:
- sodium hydroxide + oxalic acid → sodium oxalate + water
d) Chemical equation:
- NaOH + H₂C₂O₄ → Na₂C₂O₄ + H₂O
b) Balanced chemical equation:
- 2NaOH + H₂C₂O₄ → Na₂C₂O₄ + 2H₂O
<u>2) Mole ratio</u>
- 2mol Na OH : 1 mol H₂C₂O₄ :1 mol Na₂C₂O₄ : 2 mol H₂O
<u>3) Starting amount of oxalic acid</u>
- mass = 28 mg = 0.028 g
- molar mass = 90.03 g/mol
- Convert mass in grams to number of moles, n:
n = mass in grams / molar mass = 0.028 g / 90.03 g/mol = 0.000311 mol
<u>4) Titration</u>
- Volume of base: 28.4 mL = 0.0248 liter
- Concentration of base: x (unknwon)
- Number of moles of acid: 2.52 mol (calculated above)
- Proportion using the theoretical mole ratio (2mol Na OH : 1 mol H₂C₂O₄)

That means that there are 0.000622 moles of NaOH (solute)
<u>5) Molarity of NaOH solution</u>
- M = n / V (liter) = 0.000622 mol / 0.0284 liter = 0.0219 M
That is the correct number using <em>three signficant figures</em>, such as the starting data are reported.
Answer:
Solar energy is energy from the sun converting it to thermal or electric energy. It is renewable resource meaning it will never die out. It is also called radiant energy.
Explanation: