Answer:
0.03947 atm
Explanation:
The relationship between mmHg and atm is given as;
1 atm = 760 mmHg
x atm = 30 mmHg
Upon solving for x;
x * 760 = 30 * 1
x = 30 / 760 = 0.03947 atm
Partial pressure (N2) = mole fraction * total pressure
{ 1 mole of any ideal gas occupy same volume of 1 mole of any other ideal gas under same condition of temperature and pressure so mole fraction in the sample is simply 78.08% = 0.7808 this is because equal volume of each gas has equal moles
partial pressure N2 = 0.7808 * 760 .0
partial pressure = 593.4 mmhg ( 1 torr = 1mmhg )
Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
D. CuCl2 copper(2)chloride
It is 4/10 of moles is this ane halp?