Answer:
Raster Image Correlation Spectroscopy (RICS) is a novel new technique for measuring molecular dynamics and confocal fluorescence imaging concentrations. RICS technique extracts information on molecular dynamics and concentrations of live cell images taken in commercial confocal systems
Explanation:
RICS analysis must be performed on images acquired through raster scanning. Laser scanning microscopes generate images by measuring the fluorescence intensity in one area of a pixel at a time (a 'pixel' in this context does not have the same definition as a pixel in computer graphics, but refers to a measurement of localized intensity). The value of a pixel is obtained by illuminating a region of the sample with the focal volume of a laser beam and measuring the intensity of the fluorescence emitted. The laser beam moves to a new location and a new pixel is recorded. Each pixel can be considered to correspond to a region of the sample, with its width (called pixel size) defined by the distance the beam moves between measurements. This means that the size of a pixel is separate and independent from the size of the focal volume of the laser beam.
Each of the organic compounds mentioned has a general formula so that we can identify the classification of a certain substance. The compound CH₃CH₂OH is an alcohol because it follows the general formula R-OH, where R is a hydrocarbon chain. In this case, the hydrocarbon chain is ethane. When a hydroxyl functional group is attached, it becomes an alcohol whose name is ethanol.
Answer:
The water will evaporate and fly out of the bucket; the process will not stop until there is enough water vapor in the atmosphere that the vapor pressure stops the water from boiling further.
Explanation:
Exothermic reactions is where energy is released. Exothermic reactions are reactions that release energy into the environment in the form of heat. Exothermic reactions feel warm or hot or may even be explosive.