Balanced equation for the above reaction is as follows;
Mg(OH)₂ + 2HCl ---> MgCl₂ + 2H₂O
stoichiometry of Mg(OH)₂ to MgCl₂ is 1:1
mass of Mg(OH)₂ reacted - 1.82 g
number of moles of Mg(OH)₂ - 1.82 g/ 58.3 g/mol = 0.0312 mol
number of Mg(OH)₂ moles reacted - number of MgCl₂ moles formed
number of MgCl₂ moles formed - 0.0312 mol
mass of MgCl₂ formed - 0.0312 mol x 95.2 g/mol = 2.97 g
mass of MgCl₂ formed - 2.97 g
The boiling point of oxygen is higher than nitrogen's boiling
The reason the boiling point of O2 is higher is not because of increased van der Waals interactions, but simple physics. The mass of a molecule of O2 is greater than that of a molecule of N2, so the molecule of O2 traveling at a speed sufficient to break out of the liquid phase has a greater kinetic energy than an analogous N2 molecule.
The net effect is that more energy must be distributed throughout a sample of O2 to achieve a given vapor pressure (in this case equal to atmospheric pressure) than for a sample of N2. More energy means greater temperature.
Answer:
Product A: cis; no
Product B: cis: no
Explanation:
Two common methods of forming oxiranes from alkenes are:
- Reaction with peroxyacids
- Formation of a halohydrin followed by reaction with base
1. Reaction with peroxyacids
(a) Stereochemistry
The reaction with a peroxyacid is a syn addition, so the product has the same stereochemistry as the alkene.
The starting alkene is cis, so the product is <em>cis</em>-2,3-diethyloxirane.
(b) Configuration
The product is optically inactive because it has an internal plane of symmetry.
It will not rotate the plane of polarized light.
2. Halohydrin formation
(a) Stereochemistry
The halogenation of the alkene proceeds via a cyclic halonium ion.
The backside displacement of halide ion by alkoxide is also stereospecific, so a cis alkene gives a cis epoxide.
The product is <em>cis</em>-2,3-diethyloxirane.
(b) Configuration
The cyclic halonium ion has an internal plane of symmetry, as does the product (meso).
The oxirane will not rotate the plane of polarized light.
Answer:
Therefore it takes 8.0 mins for it to decrease to 0.085 M
Explanation:
First order reaction: The rate of reaction is proportional to the concentration of reactant of power one is called first order reaction.
A→ product
Let the concentration of A = [A]
![\textrm{rate of reaction}=-\frac{d[A]}{dt} =k[A]](https://tex.z-dn.net/?f=%5Ctextrm%7Brate%20of%20reaction%7D%3D-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dk%5BA%5D)
![k=\frac{2.303}{t} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
[A₀] = initial concentration
[A]= final concentration
t= time
k= rate constant
Half life: Half life is time to reduce the concentration of reactant of its half.

Here 


To find the time takes for it to decrease to 0.085 we use the below equation
![k=\frac{2.303}{t} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
![\Rightarrow t=\frac{2.303}{k} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=%5CRightarrow%20t%3D%5Cfrac%7B2.303%7D%7Bk%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
Here ,
, [A₀] = 0.13 m and [ A] = 0.085 M


Therefore it takes 8.0 mins for it to decrease to 0.085 M