This item is solved through the concept of the conservation of momentum which states that the momentum before and after collision should be equal.
momentum = mass x velocity
(1,600 kg)(16 m/s) + (1.0x10^3 kg)(10 m/s) = (1600 + 1000 kg)(x)
The value of x is 13.69 m/s. Thus, their final speed is approximately letter D. 14 m/s.
An ampere (AM-pir), or amp
Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
Answer:
The reflection and rectilinear propagation of light helps in the formation of shadows and also tells light doesn't penetrate opaque materials.
Answer:
<h2>18 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 6 × 3
We have the final answer as
<h3>18 N</h3>
Hope this helps you