1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GarryVolchara [31]
3 years ago
13

Which of the following is an echinoderm that moves by waving its arms?

Physics
2 answers:
charle [14.2K]3 years ago
6 0

The answer to this question is b

sukhopar [10]3 years ago
4 0
B. Brittle Star is an echinoderm that moves by waving its arms.

Brittle star is a spiny, hard-skinned, long-armed animal, related to sea star, that lives on rocky sea floor, from shallow areas to the deepest areas. It uses its flexible arms for locomotion.


You might be interested in
The waves produced on the earth’s surface is called
Maslowich

Answer:

seismic wave

Explanation:

  • These waves are produced because of plate tectonics
  • These helps are useful in measurements of earthquake.
  • Used in seismograph.
6 0
2 years ago
Read 2 more answers
The law of conservation of energy and describe the energy transformation that occur as you coast down a long hill on a bicycle a
Phantasy [73]

As you coast down a long hill on your bicycle, potential energy from your height is converted to kinetic energy as you and your bike are pulled downward by gravity along the slope of the hill. While there is air resistance and friction slowing you down by a little bit, your speed increases gradually until you apply the brakes, causing enough friction to slow yourself and the bike to a stop at the bottom

8 0
3 years ago
What is one disadvantage of sending information over long distances
shusha [124]

Answer:

A is the correct answer.

4 0
3 years ago
Read 2 more answers
A rock that has magnetic properties is
Dahasolnce [82]

Answer: lodestone

Explanation:

ITS LODESTONE

6 0
3 years ago
Two fully charged cylindrical capacitors are connected to two identical batteries. The capacitors are identical except that the
Leni [432]

Answer:

Part(a):  The relative capacitance is \dfrac{C_{A}}{C_{B}} = 0.33

Part(b): The relative energy stored is \dfrac{U_{A}}{U_{B}} = 0.33

Part(c): The relative charge stored is \dfrac{Q_{A}}{Q_{B}} = 0.33

Explanation:

We know the capacitance (C) of a capacitor having charge (Q) and subjected to a potential difference of (V) is given by

C = \dfrac{Q}{V}

Also, the energy (U) stored by a capacitor can be written as

U = \dfrac{1}{2}C~V^{2}

Let us assume that the inner radius of the Capacitor B, as shown in the figure, be \textbf{r_{i}^{B}}\bf{r_{i}^{B}}, the outer radius be \bf{r_{o}^{B}}, the inner radius of Capacitor A be \bf{r_{i}^{A}} and the outer radius be \bf{r_{o}^{B}}.

Given in the problem,

&& r_{o}^{B} = 2~r_{B}^{i}\\&& r_{o}^{A} = 4~r_{B}^{i}\\&& and~r_{i}^{B} = 4~r_{o}^{B} = 8~r_{B}^{i}

Now, the capacitance (C) of a cylindrical capacitor is given by,

\bf{C = \dfrac{2~\pi~\epsilon_{0}~L}{ln(\dfrac{r_{o}}{r_{i}})}}

where \epsilon_{o} is the permittivity of the free space, L is the length of the cylindrical capacitor.

Part(a):

The capacitance of capacitor A,

C_{A} = \dfrac{2~\pi~\epsilon_{0}L}{ln(\dfrac{r_{o}^{A}}{r_{i}^{A}})} = \dfrac{2~\pi~\epsilon_{0}L}{ln(\dfrac{8~r_{i}^{B}}{r_{i}^{B}})} = \dfrac{2~\pi~\epsilon_{0}L}{ln(8)}

and the capacitance of capacitor B,

C_{B} = \dfrac{2~\pi~\epsilon_{0}L}{ln(\dfrac{r_{o}^{B}}{r_{i}^{B}})} = \dfrac{2~\pi~\epsilon_{0}L}{ln(\dfrac{2~r_{i}^{B}}{r_{i}^{B}})} = \dfrac{2~\pi~\epsilon_{0}L}{ln(2)}

giving the relative capacitance of each capacitor to be

\dfrac{C_{A}}{C_{B}} = \dfrac{ln(2)}{ln(8)} = \dfrac{ln(2)}{3~\ln(2)} = \dfrac{1}{3} = 0.33

Part(b):

Energy stored by capacitor A,

U_{A} = \dfrac{1}{2}~C_{A}~V^{2}

Energy stored by capacitor B,

U_{B} = \dfrac{1}{2}~C_{B}~V^{2}

giving the relative energy stored by each capacitor to be

\dfrac{U_{A}}{U_{B}} = \dfrac{C_{A}}{C_{B}} = 0.33

Part(c):

The charge stored by capacitor A,

Q_{A} = C_{A}~V

The charge stored by capacitor B,

Q_{B} = C_{B}~V

giving the relative charge stored by each capacitor to be

\dfrac{Q_{A}}{Q_{B}} =  \dfrac{C_{A}}{C_{B}} = 0.33

8 0
3 years ago
Other questions:
  • True or false kinetic energy increases if the speed or the mass of an object increases
    5·2 answers
  • Why do the planets in our solar system have a layered internal structure?
    5·1 answer
  • 5. When an object is placed 8 millimeters from a concave spherical mirror, a clear image can be projected on a screen 16 millime
    7·2 answers
  • Glands that are responsible for lubricating the skin and minimizing water loss are called
    7·1 answer
  • Using the work energy theorem. What is the velocity of a 850kg car after starting at rest when 13,000J of work is done to it.
    12·1 answer
  • If a vehicle is moving at 45m/s initially 36m/s after 2.0s and 27m/s after 4.0s at what time will it come to a stop
    10·1 answer
  • The speed of a wave is 70 m/s. If the wavelength of the wave is 0.4
    11·2 answers
  • Help plssss 30 point this time
    5·1 answer
  • How does the today's model of the atom DIFFER from the Rutherford’s model? 25 Points
    10·2 answers
  • Can someone help me on boding elements? please im struggling. look at the picture and also if you answer can you have a picture
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!