Answer:
Acosθ
Explanation:
The x-component of a vector is defined as :
Magnitude * cosine of the angle
Maginitude * cosθ
The magnitude is represented as A
Hence, horizontal, x - component of the vector is :
Acosθ
Furthermore,
The y-component is taken as the sin of the of the angle multiplied by the magnitude
Vertical, y component : Asinθ
Answer: 2.55meter
Explanation: Using the second equation of motion.
S{hieght} = U*t + {g*t²}/2
Where U is initial velocity =0m/s
g is acceleration due to gravity 10m/s²
t is time 1secs
So we have,
hieght = 0 + {g*t²}/2
hieght = {10*(1)²}/2
Total hieght travelled is 10/2
Which is 5 meter.
But we are asked to find the hieght above the window which as a hieght of 2.45meter.
So,
hieght above window would be
{5 - 2.45}meter
Which is 2.55 meter.
The correct answer to the question is vertically downward i.e towards the centre of earth.
EXPLANATION:
As per the question, the box is pulled to the right.
Hence, the direction of the applied force is towards right.
We are asked to determine the direction of the gravitational force that acts on the body.
Before answering this question, first we gave to understand the gravitational force of earth.
Any body present on the surface of earth is attracted with the force of gravity of earth ( gravitational force ) towards its centre. It is equivalent to the weight of the body.
The force of gravity is always directed towards the centre of earth irrespective of the nature of applied force.
Hence, the direction of the gravitational force which acts on the box is vertically downward.
Its prominent ring system which is composed of primarily ice particles with smaller amounts of rocky detbris. Hope this helped!
Answer: D. the distance between the highest points of consecutive waves
Explanation:
The wavelength of a wave is defined as the <em>distance traveled by a periodic perturbation that propagates through a medium in a given time interval</em>. It is usually represented by
and can be calculated if the frequency of the wave is known, since there is an inverse relationship between both.
In the specific case of a periodic sine wave (which is the way in which a wave is usually represented graphically) the wavelength can be determined as the distance between two consecutive maxima of the disturbance.
Therefore, the correct option is D.