Answer:
Q = 125.538 W
Explanation:
Given data:
D = 30 cm
Temperature
degree celcius
![T_S = 220 + 273 = 473 K](https://tex.z-dn.net/?f=T_S%20%3D%20%20220%20%2B%20273%20%3D%20473%20K)
Heat coefficient = 12 W/m^2 K
Efficiency 80% = 0.8
![Q = hA(T_S - T_{\infty}) \eta](https://tex.z-dn.net/?f=Q%20%3D%20hA%28T_S%20-%20T_%7B%5Cinfty%7D%29%20%5Ceta)
![= 12(\frac{\pi}{4} 0.3^2) (473 - 288) 0.8](https://tex.z-dn.net/?f=%3D%2012%28%5Cfrac%7B%5Cpi%7D%7B4%7D%200.3%5E2%29%20%28473%20-%20288%29%200.8)
Q = 125.538 W
Answer and Explanation:
clear all; close all;
N=512;
t=(1:N)/N;
fs=1000;
f=(1:N)*fs/N;
x= sin(2*pi*200*t) + sin(2*pi*400*t);
y= sin(2*pi*200*t) + sin(2*pi*900*t);
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))
c(n) = sqrt(a(n).^2+b(n).^2)
theta(n) =-(360/(2*pi))*atan(b(n)./a(n));
end
plot(f(1:20),c(1:20),'rd');
disp([a(1:4),b(1:4),c(1:4),theta(1:4)])
Answer:
The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.
Explanation:
Answer:
The risk of catastrophic wildfire is a real and serious threat facing those who reside in the forested areas of Boulder County. Dating back to the Black Tiger Fire of 1989, wildfires have collectively destroyed some 250 homes or other structures, burned over 16,000 acres, and threatened the lives and properties of thousands of mountain residents. In an attempt to mitigate the loss of life and property in Boulder County, the Land Use Department has included wildfire mitigation measures in the planning review and building permit process.
Explanation:
Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V
![X_{s} =1.23(\frac{V_{line}^{2} }{s} )=1.23\frac{24000^{2} }{1500} =4723.2 ohms](https://tex.z-dn.net/?f=X_%7Bs%7D%20%3D1.23%28%5Cfrac%7BV_%7Bline%7D%5E%7B2%7D%20%20%7D%7Bs%7D%20%29%3D1.23%5Cfrac%7B24000%5E%7B2%7D%20%7D%7B1500%7D%20%3D4723.2%20ohms)
the network voltage phase is
![V_{phase} =\frac{V_{nline} }{\sqrt{3} } =\frac{27}{\sqrt{3} } =15.58kV](https://tex.z-dn.net/?f=V_%7Bphase%7D%20%3D%5Cfrac%7BV_%7Bnline%7D%20%7D%7B%5Csqrt%7B3%7D%20%7D%20%3D%5Cfrac%7B27%7D%7B%5Csqrt%7B3%7D%20%7D%20%3D15.58kV)
the power transmitted is equal to:
![|E|=\frac{P*X_{s} }{3*|V_{phase}|sinO } ;if-O=60\\|E|=\frac{300*4.723}{3*15.58*sin60} =34.98kV](https://tex.z-dn.net/?f=%7CE%7C%3D%5Cfrac%7BP%2AX_%7Bs%7D%20%7D%7B3%2A%7CV_%7Bphase%7D%7CsinO%20%7D%20%3Bif-O%3D60%5C%5C%7CE%7C%3D%5Cfrac%7B300%2A4.723%7D%7B3%2A15.58%2Asin60%7D%20%3D34.98kV)
the line induced voltage is
![|E_{line} |=\sqrt{3} *|E|=\sqrt{3} *34.98=60.59kV](https://tex.z-dn.net/?f=%7CE_%7Bline%7D%20%7C%3D%5Csqrt%7B3%7D%20%2A%7CE%7C%3D%5Csqrt%7B3%7D%20%2A34.98%3D60.59kV)