<span><span>Imagine we have a 2 lb ball of putty moving with a speed of 5 mph striking and sticking to a 18 lb bowling ball at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v1. To find v1, use momentum conservation: 2x5=(18+2)v1, v1=0.5 mph. </span><span>Next, imagine we have a 18 lb bowling ball moving with a speed of 5 mph striking and sticking to a 2 lb ball of putty at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v2. To find v2, use momentum conservation: 18x5=(18+2)v2, v2=4.5 mph. </span><span>
</span><span>
</span><span>now figure out your problem its really easy let me know if you need more help </span></span>
Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>
Answer:
The speed of the spacecraft should be 719.35m/s
Explanation:
if the spacecraft is orbiting the planet with a circular orbit, the gravitational force must act as a centripetal force. This means:

In this case, the pluto's mass M is 1.3099·10^22 kg. The radius of the planet R is 1188.3Km and G is the gravitational constant. Therefore:

<span>a. current will increase. </span>