Answer:
Distance is 50m
Displacement is 0m
Explanation:
Distance is based on the amount of length you covered, regardless of where you end.
Displacement only considered where you started and where you ended, which is at the same spot in this case. Therefore, no displacement.
impulse = F × t
The greater the impulse exerted on something, the greater will be the change in momentum.
impulse = change in momentum
Ft = ∆(mv)
I am not as sure but I think it is 9.469 miles
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.