Answer:
Diamond.
Explanation:
Having thermal conductivity of more than 2,000 WMK
WMK = Watts per Meter per Kelvin
ANWERS ~
We know that :
1 cal (th) = 4.184 J
1 J = 0.2390057361 cal (th) , so :
•55.2 j to cal > 13.193116635 cal
•110 call > 460.24 joule
•65 kj > divide the energy value by 4.184
= 15.535 kilocalories calorie (IT)
——————
Converting form C to F > (F-32)*5/9Understand it better if we have Fahrenheit just add to the equation mentioned to find Celsius.
+to find F to C> (9/5*C)+32
•425 Fahrenheit = (425- 32) × 5/9 =218.33333333 Celsius
•1935 C = 3515 F
———————————-
Converting Celsius to kelvin,We know that :
K = C + 273.15
C = K - 273.15
And from F to K=9/5(F+459.67)
And K to F =(9/5 *k)-459.67
•39.4 Celsius = 312.55 kelvin
•337 Fahrenheit = (337+ 459.67) × 5/9 =442.594 kelvin
How are the conditions at which phases are in equilibrium represented on a phase diagram?
Image result for How are the conditions at which phases are in equilibrium represented on a phase diagram?
Along the line between liquid and solid, the melting temperatures for different pressures can be found. The junction of the three curves, called the triple point, represents the unique conditions under which all three phases exist in equilibrium together. Phase diagrams are specific for each substance and mixture.
Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration ,
. Thus according to the Machaelis-Menten equation becomes
![$V_0 = \frac{V_{max} \times [S]}{Km}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%7D%24)
Here since the
varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
![$V_0 = \frac{V_{max} \times [S]}{Km+[S]}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%2B%5BS%5D%7D%24)
Here the initial velocity changes directly with the substrate concentration as
is directly proportional to [S]. But
is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.