Answer: Option (d) is the correct answer.
Explanation:
It is known that water loving bonds are called hydrophilic bonds and water hating bonds are called hydrophobic bonds. Since, water is a polar solvent and it is only able to dissolve polar molecules and not non-polar molecules.
Lattice of water and hydrogen bonding are responsible for the various properties of water like cohesion, adhesion, heat of vaporization etc.
Thus, we can conclude that water lattice excludes non-polar substances.
<span>54.8 g of MgI2 can be produced.
To solve this, you need to determine the molar mass of each reactant and the product. First, look up the atomic weights of iodine and magnesium
Atomic weight of Iodine = 126.90447
Atomic weight of Magnesium = 24.305
Molar mass of MgI2 = 24.305 + 2 * 126.90447 = 278.11394
Now determine how many moles of Iodine and Magnesium you have
moles of Iodine = 50.0 g / 126.90447 g/mol = 0.393997154 mole
moles of Magnesium = 5.15 / 24.305 g/mol = 0.211890557 mole
Since for every magnesium atom, you need 2 iodine atoms and since the number of moles of available iodine isn't at least 2 times the available moles of magnesium, iodine is the limiting reagent.
So figure out how many moles of magnesium will be consumed by the iodine
0.393997154 mole / 2 = 0.196998577 mole.
This means that you can make 0.196998577 moles of MgI2. Now simply multiply by the previously calculated molar mass of MgI2
0.196998577 mole * 278.11394 g/mole = 54.78805 g
Round the result to the correct number of significant figures.
54.78805 g = 54.8 g</span>
You are left with a chloride ion, so you started off with a chlorine atom.
Cl + e- → Cl-
Answer:
Green
Explanation:
Positive: A strong green color in the flame indicates the presence of halogens (chloride, bromide, iodide but not fluoride).