Answer:
The equivalent weight of M is approximately 31.8 g
The equivalent weight of N is approximately 27.98 g
Explanation:
The given parameters are;
The percentage of the the metal M in in the chloride = 47.25%
Where by the chemical formula for the metal chloride is MClₓ, we have;
47.25% of the mass of MClₓ = Mass of M = W
Therefore, we have;

0.4725 × (W + 35.5·x) = W
0.4725·W + 0.4725×35.5×x = W
W - 0.4725·W = 16.77·x
0.5275·W = 16.77·x
W/x = 16.77/0.5275 = 31.799 = The equivalent weight of M
The equivalent weight of M = 31.799 ≈ 31.8 g
Given that 1 gram of M is displaced by 0.88 gram of N, then the equivalent weight of N that will displace 31.799 = 0.88 × 31.799 ≈ 27.98 g
The equivalent weight of N = 27.98 g.
Answer:
0!
Explanation:
- You need to search your pKa values for Asn (2.14, 8.75), Gly (2.35, 9.78) and Leu(2.33, 9.74), the first value corresponding to -COOH, the second to -NH3 (a third value would correspond to an R group, but in this case that does not apply), and we'll build a table to find the charges for your possible dissociated groups at indicated pH (7), we need to remember that having a pKa lower than the pH will give us a negative charge, having a pKa bigger than pH will give us a positive charge:
-COOH -NH3
pH 7------------------------------------------------------
Asn - +
Gly - +
Leu - +
- Now that we have our table we'll sketch our peptide's structure:
<em>HN-Asn-Gly-Leu-COOH</em>
This will allow us to see what groups will be free to react to the pH's value, and which groups are not reacting to pH because are forming the bond between amino acids. In this particular example only -NH group in Ans and -COOH in Leu are exposed to pH, we'll look for these charges in the table and add them to find the net charge:
+1 (HN-Asn)
-1 (Leu-COOH)
=0
The net charge is 0!
I hope you find this information useful and interesting! Good luck!
Answer:
190.4g
Explanation:
1.6mol of KBr (119.002g KBr/1 mol) = 190.4g
since you want to find grams, take the molar mass of KBr (119.002) per 1 mol and use it as your conversion factor (119.002g KBr/1 mol) which will then cancel out mols and leave you with grams.
Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.
Answer:
Both involve drilling into the earth and can cause environmental degradation.
Explanation: