Answer:
A. False.
Every substance contains the same number of molecules i.e 6.02x10^23 molecules
B. False.
Mass conc. = number mole x molar Mass
Mass conc. of 1mole of N2 = 1 x 28 = 28g
Mass conc. of 1mol of Ar = 1 x 40 = 40g
The mass of 1mole of Ar is greater than the mass of 1mole of N2
C. False.
Molar Mass of N2 = 2x14 = 28g/mol
Molar Mass of Ar = 40g/mol
The molar mass of Ar is greater than that of N2.
Explanation:
Answer:
Required number is the vertical coordinate of the intersection point of a line at 60°C with the graph of the KNO₃.
Answer:
2.11 g hydrobromic acid (correct to 3SF)
Explanation:
Molecular formula of hydrobromic acid = C2H5BrO2
mass of C2H5BrO2 = 140.96g
Beginning with what we're given, 9.03*10^21 we then make a conversion by using Avegadro's number which is 6.02*10^23 per mole (Oct. 23 at 6:02 am is national mole day :) Then, we need to convert out of moles, 140.96g hydrombromic acid per mole.
It looks like this:
9.03*10^21 molecules • (1 mol C2H5BrO2 / 6.02*10^23 molecules) • (140g C2H5BrO2 / 1 mol) = 2.1144 g C2H5BrO2
Answer : The volume of
produced at standard conditions of temperature and pressure is 0.2422 L
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of
gas = (740-22.4) torr = 717.6 torr
= final pressure of
gas at STP= 760 torr
= initial volume of
gas = 280 mL
= final volume of
gas at STP = ?
= initial temperature of
gas = 
= final temperature of
gas = 
Now put all the given values in the above equation, we get:


Therefore, the volume of
produced at standard conditions of temperature and pressure is 0.2422 L
Oxidation half reaction is written as follows when using using reduction potential chart
example when using copper it is written as follows
CU2+ +2e- --> c(s) +0.34v
oxidasation is the loos of electron hence copper oxidation potential is as follows
cu (s) --> CU2+ +2e -0.34v