Gasoline is refined petroleum used in engines as a fuel. It contains octane that can be converted to isooctane by adding catalysts like platinum and palladium.
<h3>What are catalysts?</h3>
Catalysts are substances that raise the reaction rate by decreasing the activation energy but do not get consumed themselves in a reaction.
Platinum and palladium metals can be used as a catalyst to convert the octane of the gasoline into isooctane as they are oxidation catalyst that converts the fuel components into water and carbon dioxide.
Therefore, platinum and palladium are used as catalysts in converting octane.
Learn more about catalysts here:
brainly.com/question/1392595
#SPJ4
The correct answer is
.
<h3>Organometallic reagent</h3>
Organometallic chemistry is the study of organometallic compounds, which are substances that contain at least one chemical bond between a carbon atom from an organic molecule and a metal. These substances include alkali, alkaline earth, and transition metals, as well as metalloids like boron, silicon, and selenium. In addition to links to organyl fragments or molecules, bonds to 'inorganic' carbon, such as those to carbon monoxide (metal carbonyls), cyanide, or carbide, are also typically regarded as organometallic. Although they are not strictly speaking organometallic compounds, some similar compounds, such as transition metal hydrides and metal phosphine complexes, are frequently included in discussions of such substances. The phrase "metalorganic compound," which is comparable but different, describes molecules that contain metals but do not have direct metal-carbon bonds but do have organic ligands.
Learn more about organometallic reagent here:
brainly.com/question/13299409
#SPJ4
Answer:Chemical reactions often involve changes in energy due to the breaking and formation of bonds. Reactions in which energy is released are exothermic reactions, while those that take in heat energy are endothermic. exothermicA description of a chemical reaction that releases heat energy to its surroundings.
Answer:
d = 0.793 g/L
Explanation:
Given data:
Density of fluorine gas = ?
Pressure of gas = 0.554 atm
Temperature of gas = 50 °C (50+273.15K = 323.15 K)
Solution:
Formula:
PM = dRT
M = molar mass of gas
P = pressure
R = general gas constant
T = temperature
d = PM/RT
d = 0.554 atm × 37.99 g/mol / 0.0821 atm.L /mol.K × 323.15 K
d = 21.05 atm.g/mol/26.53 atm.L /mol
d = 0.793 g/L