Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
Answer:
The ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Explanation:
The resistance of the coil is directly proportional to the length of the coil and inversely proportional to the area of coil and hence inversely proportional to the square of radius of the coil.
So, the ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Wavelength = (speed) / (frequency)
Wavelength = (300 thousand km per second) / (10.5 billion per second)
Wavelength = (300 / 10.5) (thousand km per second) / (billion per second)
Wavelength = (28.57) (million meters / second) / (thousand million / second)
Wavelength = (28.57) (meters / second) / (thousand / second)
Wavelength = (28.57) (meters / thousand)
<em>Wavelength = (28.57) (millimeters) </em>
Answer:
none
Explanation:
Newton's first law says an object in motion will stay in motion at the same speed and direction unless acted upon by some force.
No force is necessary for the object to keep its speed and direction on a frictionless surface.
Answer:
7.468 kN
Explanation:
Here the force of 7468 Newton is given.
Some of the prefixes of the SI units are
kilo = 10³
Mega = 10⁶
Giga = 10⁹
The number is 7468.0
Here, the only solution where the number of significant figures is kilo
1 kilonewton = 1000 Newton


So 7468 N = 7.468 kN