Answer:
T
beacuse:
Energy can be transferred from one object to another by doing work. ... When work is done, energy is transferred from the agent to the object, which results in a change in the object's motion (more specifically, a change in the object's kinetic energy).
Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
Motion is the correct word that fits in.
Hope this helps.
The magnitude of the net displacement is 95.3 m
Explanation:
To find the magnitude of the net displacement, we have to resolve each of the two displacements into the horizontal and vertical direction first.
1st displacement is:
at 
So its components are

2nd displacement is:
at 
So its components are

Therefore, the x- and y-components of the net displacement are:

Therefore, the magnitude of the final displacement is:

Learn more about displacement:
brainly.com/question/3969582
#LearnwithBrainly
law of conservation of energy
aka the first law of thermodynamics