Answer:
(Example Person) has to push hard to get the skateboard started, but once it begins moving, it takes much less effort to keep it rolling over the smooth, flat pavement. In fact, if (Example Person) tries to stop the rolling skateboard, it may take as much effort to stop it as it did to start it rolling in the first place.
Explanation:
Hope this helps :)
It's the Doppler Effect that "up and down sound."
I was on Yahoo--- Brainly doesn't have an option for Credientials or Site credit, so I'll just put this in the quotes:
<span>The formula for doppler effect is always (s is speed and f is frequency): </span>
<span>f_perceived.by.observer = f_of.emitted.wave * (s_wave + s_observer) / (s_wave + s_source.of.wave) </span>
<span>And you should pay attention to the signs: </span>
<span>s_observer is positive if the receiver is moving towards the source, negative otherwise </span>
<span>s_source.of.wave is positive if the source is moving away from the observer, negative otherwise </span>
<span>Applying it to this case: </span>
<span>s_source.of.wave = ? (positive), speed of ambulance </span>
<span>s_observer = + 2.44 m/s speed cyclist </span>
<span>f_of.emitted.wave =1800 Hz frequency of whine </span>
<span>f_perceived.by.observer = 1760 frequency heard by cyclist </span>
<span>s_wave = 343 m/s speed of sound in air </span>
<span>Now you know every value in the equation for doppler effect except by s_source.of.wave, so you can solve for s_source.of.wave.</span>
Explanation :
Displacement refers to the distance between the final and the initial position. Hence the displacement of the ball will be the difference between the initial and the final displacement.
Let the initial position be 0.
Final position = 8 cm
So the difference between initial position and final position = 0 – 8 = - 8 cm.
So the billiard ball comes to rest 8.0 cm behind its orbital position.