Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
Answer:
False
Explanation:
sea floor spreading is not consistent at all mid ocean ridges.
The last set which is n=4 l=3 m=3 is a valid set
2.258625 *10²³ oxygen atoms will be produced.
<h3><u>Explanation:</u></h3>
Decomposition reaction is defined as the type of reaction where one single reactant breaks to produce more than one product only by means of heat or other external factor.
Formula of magnesium oxide = MgO.
The molecular mass of magnesium oxide = 24 +16= 40.
So in 40 grams of magnesium oxide, number of molecules is 6.023 * 10²³.
So in 15 grams of magnesium oxide,, number of molecules is 6.023 *1023 * 15/40 = 2.258625 *10²³.
From one molecule of magnesium oxide, one oxide atom will be produced.
So number of oxide atoms with 100% yeild = 2.258625 *10²³