Answer: Descartes was more of speed which defers from modern day velocity.
Explanation:
Descartes law if conservation referred or defined “motion” rather than “momentum” as what is obtainable in today's world as ”speed” the rate at which something moves rather than “velocity” which is a product of speed and direction. So in conclusion Descartes was more of speed which defers from modern day velocity.
Answer:
857.5 m
2.8583×10⁻⁶ seconds
Explanation:
Time taken by the sound of the thunder to reach the student = 2.5 s
Speed of sound in air is 343 m/s
Speed of light is 3×10⁸ m/s
Distance travelled by the sound = Time taken by the sound × Speed of sound in air
⇒Distance travelled by the sound = 2.5×343 = 857.5 m
⇒Distance travelled by the sound = 857.5 m
Time taken by light = Distance the light travelled / Speed of light

Time taken by light = 2.8583×10⁻⁶ seconds
Answer: 2, the nuclear strong force drops to practically nothing at large distances.
Explanation: The protons and neutrons in the nucleus share subatomic particles called pions. This exchange is what keeps the protons and neutrons stuck together in the nucleus. Despite the strong force being the strongest force, it has a very small range. This is because pions have very short lifespans. So, the strong force would have literally no effect at large distances.
Hope that helped! :)
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1
Answer:
I believe it is they will weigh the same
Explanation:
Center of gravity is the axis on which the mass rotates evenly if I remember correctly from AP Physics