Answer:
In Btu:
Q=0.001390 Btu.
In Joule:
Q=1.467 J
Part B:
Temperature at midpoint=274.866 C
Explanation:
Thermal Conductivity=k=30 (Btu/hr)/(ft ⋅ °F)= 
Thermal Conductivity is SI units:

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft
Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft
T_1=500 C=932 F
T_2=50 C= 122 F
Part A:
In Joules (J)

Heat Q is:

In Btu:

Heat Q is:

PArt B:
At midpoint Length=L/2=0.1 m

On rearranging:


Answer:
The pressure drop is 269.7N/m^2
Explanation:
∆P = ∆h × rho × g
∆h = 3.2cm = 3.2/100 = 0.032m, rho = 860kg/m^3, g = 9.8m/s^2
∆P = 0.032×860×9.8 = 269.7N/m^2
Answer:
Take a 3 to 8 decoder with active low outputs
Assuming you are familiar with the functioning of decoders,
The three inputs of decoder of course are the first, second and the carry bit which you feed to the subtractor.
Next we examine the truth table of the full subtractor i formatted in the picture.
Then write the minterms for the difference output and borrow output from the given truth table picture I have mentioned before!!
Explanation:
hopi it to help you!!
Answer:
E=2 G(1+2μ)
Explanation:
Isotropic material :
Those material have same property in all direction is known as isotropic material.
Homogeneous material :
Those material have same property through out the volume is known as homogeneous material.
Relationship between Poisson ratio ,young modulus and shear modulus:
E=2 G(1+2μ)
Relationship between Poisson ratio ,bulk modulus and shear modulus:
E=2 K(1-μ)
Where
E is young modulus.
G is shear modulus.
μ is Poisson ratio.