1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
2 years ago
10

Does anybody know how to take a screenshot on a HP pavilion computer?

Engineering
1 answer:
Setler79 [48]2 years ago
6 0

Answer:

I do i do it everyday

Explanation:

Press windows and prt sc at the same time

You might be interested in
What is the locating position of the land field?​
BaLLatris [955]

Answer:

Look at a map or globe. Where are places located? Every place has a "global address" that tells exactly where in the world it's located, just as your home has a street address. There are two numbers in a global address--a number for latitude and one for longitude. If you know these numbers and how to use them, you can find any place in the world and give its absolute location. (For definitions, see the glossary at the end of this booklet.)

Why are things located in particular places and how do these places influence our lives? Location can describe how one place relates to another. For example, the Panama Canal was cut across an extremely narrow strip of land in Central America. It provides a shipping lane between the Atlantic and Pacific Oceans, eliminating the need for long, dangerous journeys around South America.

Explanation:

<h2><u>hope</u><u> it</u><u> helps</u></h2>

5 0
3 years ago
Read 2 more answers
Which of the following machine parts always require
Anna007 [38]

Answer:fan blades, rotating , abrasive wheel machinery

Explanation:

8 0
2 years ago
2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11
ahrayia [7]

This question is incomplete, the missing diagram is uploaded along this answer below.

Answer:

the forces required to keep the artery in place is 1.65 N

Explanation:

Given the data in the question;

Inlet velocity V₁ = 50 cm/s = 0.5 m/s

diameter d₁ = 15 mm = 0.015 m

radius r₁ = 0.0075 m

diameter d₂ = 11 mm = 0.011 m

radius r₂ = 0.0055 m

A₁ = πr² = 3.14( 0.0075 )² =  1.76625 × 10⁻⁴ m²

A₂ = πr² = 3.14( 0.0055 )² =  9.4985 × 10⁻⁵ m²

pressure at inlet P₁ = 110 mm of Hg = 14665.5 pascal

pressure at outlet P₂ = 95 mm of Hg = 12665.6 pascal

Inlet volumetric flowrate = A₁V₁ = 1.76625 × 10⁻⁴ × 0.5 = 8.83125 × 10⁻⁵ m³/s

given that; blood density is 1050 kg/m³

mass going in m' = 8.83125 × 10⁻⁵ m³/s × 1050 kg/m³ = 0.092728 kg/s

Now, using continuity equation

A₁V₁ = A₂V₂

V₂ = A₁V₁ / A₂ = (d₁/d₂)² × V₁

we substitute

V₂ =  (0.015 / 0.011 )² × 0.5

V₂ = 0.92975 m/s

from the diagram, force balance in x-direction;

0 - P₂A₂ × cos(60°) + Rₓ = m'( V₂cos(60°) - 0 )    

so we substitute in our values

0 - (12665.6 × 9.4985 × 10⁻⁵)  × cos(60°) + Rₓ = 0.092728( 0.92975 cos(60°) - 0 )    

0 - 0.6014925 + Rₓ =  0.043106929 - 0

Rₓ = 0.043106929 + 0.6014925

Rₓ = 0.6446 N

Also, we do the same force balance in y-direction;

P₁A₁ - P₂A₂ × sin(60°) + R_y = m'( V₂sin(60°) - 0.5 )  

we substitute

⇒ (14665.5 × 1.76625 × 10⁻⁴) - (12665.6 × 9.4985 × 10⁻⁵) × sin(60°) + R_y = 0.092728( 0.92975sin(60°) - 0.5 )

⇒ 1.5484 + R_y = 0.092728( 0.305187 )

⇒ 1.5484 + R_y = 0.028299    

R_y = 0.028299 - 1.5484

R_y = -1.52 N

Hence reaction force required will be;

R = √( Rₓ² + R_y² )

we substitute

R = √( (0.6446)² + (-1.52)² )

R = √( 0.41550916 + 2.3104 )

R = √( 2.72590916 )

R = 1.65 N

Therefore, the forces required to keep the artery in place is 1.65 N

 

7 0
3 years ago
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
Briefly discuss if it would be better to operate with pumps in parallel or series and how your answer would change as the steepn
Aleksandr [31]

Answer:

1) In series, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) In parallel, the combined head and volume flow will move along the system curve from point 1 to point 3.

Explanation:

1) Pump in series:

When two or more pumps are connected in series, their resulting pump performance curve will be obtained by adding their respective heads at the same flow rate as shown in the first diagram attached.

In the first diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3.

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the head of two identical pumps connected in series is twice the head of a single pump flowing at the same rate.

- Point 3 is the point where the system is operating when both pumps are running.

Now, since the flowrate is constant, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) Pump in parallel:

When two or more pumps are connected in parallel, their resulting pump performance curve will be obtained by adding their respective flow rates at same head as shown in the second diagram attached.

In the second diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the flow rate of two identical pumps connected in series is twice the flow rate of a single pump.

- Point 3 is the point where the system is operating when both pumps are running.

In this case, the combined head and volume flow will move along the system curve from point 1 to point 3.

5 0
3 years ago
Other questions:
  • A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia
    6·1 answer
  • Complex poles cmd zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed open-loop mmsfer fuoc
    10·1 answer
  • A coin placed 30.8 cm from the center of a rotating, horizontal turntable slips when its speed is 50.8 cm/s.
    12·1 answer
  • You doubled the voltage frequency in an RL series AC circuit, the inductive resistance would?
    8·2 answers
  • Which option supports the following scenario?
    14·1 answer
  • Find the general solution of the equation<br>a) Tan A = 1/√3​
    11·1 answer
  • What is the heart of a set of construction drawing?
    10·1 answer
  • 3. Sitúese en la época de los faraones en Egipto. Usted es el encargado de construir una de esas fabulosas pirámides que fueron
    11·1 answer
  • HOLA COMO ESTAN TODOS
    14·1 answer
  • The forklift exiting an aisle in a warehouse has the right of way?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!