The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
<h3>
Molecular mass of potassium carbonate</h3>
The molecular mass of potassium carbonate, K₂CO₃ is calculated as follows;
M = K₂CO₃
M = (39 x 2) + (12) + (16 x 3)
M = 138 g
mass of carbon in potassium carbonate, K₂CO₃ is = 12 g
The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is calculated as follows;
138 g ------------ 12 g of carbon
2.25 g ------------ ?
= (2.25 x 12) / 138
= 0.196 g
Thus, the mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
Learn more about potassium carbonate here: brainly.com/question/27514966
#SPJ1
Gravity because the earth's gravity is what's causing it to orbit it
C. An atom of helium has its valence electrons in its first energy level, it wouldn't and can't satisfy the Octet rule as it only has 2 electrons, but with 2, it has a full shell, as the first energy level can hold only 2 electrons.
Each shell can contain only a fixed number of electrons: The first shell can hold up to two electrons, the second shell can hold up to eight (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on. Some points will be nice