<span>1. Tap water has a small concentration of H+ & OH- ions as well as water molecules, hence there would be permanent dipole-permanent dipole (p.d.-p.d.) forces of attraction between the water molecules (aka H-bonds) as well as ionic bonds between the H+ & OH- ions.
2. Distilled water does not have H+ & OH- ions, hence only H-bonds exist between the water molecules.
3. There are covalent bonds between the individual sugar molecules.
4. There are ionic bonds between the Na+ & Cl- ions in NaCl.
5. There are p.d.-p.d. forces of attraction between the Na+ ions and the O2- partial ions of the water molecules as well as between the Cl- ions and the H+ partial ions of the water molecules. There are also H-bonds between the individual water molecules and ionic bonds between the Na+ & Cl- ions (although these are in much lower abundance than in unsolvated solid NaCl).
6. There are i.d.-i.d. as well as p.d.-p.d. forces of attraction between the sugar molecules and the water molecules. There are also H-bonds between the individual water molecules and covalent bonds within the sugar molecules.</span>
Answer:
The term temperature refers to the average amount of heat or the motion energy of particles in a substance. It measures the hotness and coldness of a substance. If an object has particles that move very fast, then it has a high temperature.
Temperature is different from the term thermal energy. Thermal energy is the total motion energy of particles in a substance. The movement of particles is always dependent on their number. If an object contains many particles, then it has greater thermal energy.
On the other hand, Heat is the energy that is involved in the movement of particles between objects that have different temperatures, particularly from an object with a high temperature to an object with a low temperature.
Answer:
Titration reveals that 12 mL of 1.5 M hydrochloric acid are required to neutralize 25 mL calcium hydroxide solution . What is the molarity of the Ca(OH) 2 solution
Explanation:
Answer:
The sequence order should be DNA to RNA to Proteins.
Explanation:
For you to get the RNA sequence, you need to find a match for the DNA sequence. Your RNA sequence should only have either AUCG for your 4 nucleotide bases. Once you have the RNA sequence found by pairing it with the DNA sequence, you would then to do use an RNA codon chart to find the amino acids. These amino acids are basically your proteins.
Organic chemistry present for a substance