Answer:
8.9L is the volume of the gas that must be dissolved.
Explanation:
For a weak base, we can find [(CH₃)₃N] using the equation:
Kb = [OH⁻] [[(CH₃)₃NH⁺] / [(CH₃)₃N]
As [OH⁻] = [[(CH₃)₃NH⁺] and [OH⁻] = 10^-pOH = 3.16x10⁻³M:
6.3x10⁻⁵ = [3.16x10⁻³M][3.16x10⁻³M] / [(CH₃)₃N]
[(CH₃)₃N] = 0.1587M
As the volume is 2.5L, moles are:
2.5L * (0.1587mol / L) = 0.3968moles
Using:
PV = nRT
We can solve for volume of the gas as follows:
P = 1atm at STP; n = 0.3968moles; R = 0.082atmL/molK; T = 273.15K at STP
V = 0.3968mol*0.082atmL/molK*273.15K/1atm
V = 8.9L is the volume of the gas that must be dissolved.
Answer:
Option B. Sodium
Explanation:
In the formation of NaCl, sodium loses and electron while chlorine receives the electron as illustrated below:
Na —> Na+ + e- ....... (1)
Cl + e- —> Cl- ......... (2)
Now, combining equation 1 and 2 we have:
Na + Cl + e- —> Na+ + Cl- + e-
Cancelling the electron from both side, we obtained:
Na + Cl —> Na+Cl-
From the above illustration, we see clearly that sodium loses electron
The process in which energy is converted from solar to chemical and then one form of chemical to another form is photosynthesis. It is a process carried out by the plant to make food. The leaves of the plant take in sunlight, water from the soil and carbon dioxide from the air to produce glucose and oxygen.
Answer:
To calculate the Carbon Dioxide - CO 2 - emission from a fuel, the carbon content of the fuel must be multiplied with the ratio of molecular weight of CO 2 (44) to the molecular weight of Carbon (12) -> 44 / 12 = 3.7 Emission of CO 2 from combustion of some common fuels are indicated in the table
Explanation:
Answer:
The right answer is "60.56 atm".
Explanation:
As we know,
Vander wall's equation is:
⇒ 
or,
⇒ 
Here,
a = 3.59 L² atm mol⁻²
b = 0.0427 L mol⁻¹
By putting the values in the above equation, we get
⇒ 


