a. Solid to liquid - melting process
b. Liquid to gas - evaporation process
c. Gas to solid - deposition process
d. Solid to gas - sublimation process
e. Liquid to solid - solidification process
f. Gas to liquid - condensation process
You need to find which intermolecular forces are between the molecules
dipole-dipole,h bonds, etc.
I'm not very good at explaining but this is what my prof said to help us
Identify the class of the molecule or molecules you are given. Are they nonpolar species, ions or
do they have permanent dipoles? Is there only one species or are there two?
In the case of ONE species (i.e., a pure substance), the intermolecular forces will be between
molecules of the same type. So if you are dealing with ions, the intermolecular forces will be ION-
ION or IONIC. If you are dealing with dipoles, then the intermolecular forces will be DIPOLE-
DIPOLE. If you are dealing with nonpolar species, the intermolecular forces will be DISPERSION
or VAN DER WAALS or INDUCED DIPOLE-INDUCED DIPOLE (the last three are desciptions
of the same interaction; regrettably we cannot call them nonpolar-nonpolar!).
In the case of TWO species (i.e., a mixture), the intermolecular forces will be between molecules of
one type with molecules of the second type. For example, ION-DIPOLE interactions exist between
ions dissolved in a dipolar fluid such as water.
Answer:
The molar mass of Mg(NO₃)₂, 148.3 g/mol.
Explanation:
Step 1: Given data
- Mass of Mg(NO₃)₂ (solute): 42.0 g
- Volume of solution: 259 mL = 0.259 L
Step 2: Calculate the moles of solute
To calculate the moles of solute, we need to know the molar mass of Mg(NO₃)₂, 148.3 g/mol.
42.0 g × 1 mol/148.3 g = 0.283 mol
Step 3: Calculate the molarity of the solution
M = moles of solute / liters of solution
M = 0.283 mol / 0.259 L
M = 1.09 M
The enthalpy of reaction or ∆H reaction is the difference between the bond energy of the reactants and the bond energy of the products.
<h3>What is ∆H reaction?</h3>
The term ∆H reaction refers to the heat that is evolved or absorbed in a chemical reaction. It is also known as the enthalpy of reaction.
The question is incoherent but I will try to answer as much as possible. Using the values of bond energy, ∆H reaction = Bond energy of reactants - bond energy of products. This will give us the enthalpy of reaction.
Learn more about bond energy: brainly.com/question/1657608