The statement is true. The octet rule refers to the general rule of thumb wherein atoms of main-group elements tend to bond with other atoms in such a way that each atom possesses eight electrons (octet) in their valence shell. They tend to form the same electronic configuration as the noble gases. However, there are some exceptions to this rule. One of which is silane, SiH₄. A hydrogen atom only has 1 valence electron and needs another electron to complete its energy level. This is unlike other atoms, for example, carbon which has 4 valence electrons and needs to form 4 covalent bonds to fill its energy levels. Thus, 4 hydrogen atoms need only 4 more electrons. This is given by the silicon atom which has 4 valence electrons. Therefore, when a silicon atom is bonded to 4 hydrogen atoms, the resulting molecule, SiH₄, is a stable one.
Answer:
- <u>two molecules of ammonia are formed by the reaction of one nitrogen and three hydrogen molecules.</u>
Explanation:
The balanced chemical equation provides information on:
- <u>Reactants</u>: those are the compounds that appear of the left side of the equation, each with its chemical formula.
- <u>Products</u>: those are the compounds that appear on the right side of the equation, again, each with its chemical formula.
- <u>Ratio</u>: the coefficients of each compound (the number to the left of the chemical formula) represent the ratio of the number of molecules that react and are formed.
In the given equation you have:
- Equation: N₂ + 3H₂ → 2NH₃
- The coefficients are 1 for nitrogen, 3 for hydrogen, and 2 for ammonia. Hence, 2 molecules of ammonia are formed by the reaction of 1 molecule of nitrogen and 3 molecules of hydrogen.
Answer:Effect of Catalysts on the Activation Energy. Catalysts provide a new reaction pathway in which a lower Activation energy is offered. A catalyst increases the rate of a reaction by lowering the activation energy so that more reactant molecules collide with enough energy to surmount the smaller energy barrier.
Explanation:
Your answer is in this
Answer:
When a substance gains or loses energy, its <u>temperature</u> or <u>state</u> changes. These two changes do <u>not</u> happen with respect to time; the temperature remains <u>the same</u> until the change of <u>state</u> is complete.
Explanation:
This statement is about energy and change of the state of the matter. By gaining or losing energy, the physical state of the matter can change into one another. Melting, freezing, condensation, evaporation, sublimation, and deposition are the processes that support to change the physical state of the matter. Change in state and change in the matter do not happen at the same time. A substance gains or loses energy to reach a specific temperature and remains constant until the physical change of matter is completed.
The activity series of metals as well as the electrode potential of metals can be used to compare the reactivity of metals.
<h3>What is used in comparing reactivity of metals?</h3>
The reactivity of metals can be compared using their electrode potentials which is a measures of the ability of the metal to donate electrons to another metal.
When comparing the reactivity of metals, the metal with the lesser negative electrode potential will be more reactive than another with a greater negative or positive electrode potential.
Therefore, the activity series of metals as well as the electrode potential of metals can be used to compare the reactivity of metals.
Learn more about activity series of metals at: brainly.com/question/17469010
#SPJ12