Answer:
SDFK fbsdfasdgasdfgasdfg⊃⊃⊃⊃⊃⊃×∈⇔⇔⇔
Explanation:
Answer:
in the direction of the applied force
Explanation:
Answer:
v_f = 0.87 m/s
Explanation:
We are given;
F_avg = -17700 N (negative because it's backward)
m = 117 kg
Δt = 5.50 × 10^(−2) s
v_i = 7.45 m/s
Now, formula for impulse is given by;
I = F•Δt = - 17700 x 5.50 × 10^(−2) = - 973.5 kg.m/s
From impulse momentum theory, we know that;
Change in momentum of particle is equal to impulse.
Thus,
Δp = I = m•v_f - m•v_i
Thus,
-973.5= 117(v_f - 7.45)
Thus,
-973.5/117 = (v_f - 7.45)
-8.3205 + 7.45 = v_f
v_f = - 0.87 m/s
We'll take absolute value as;
v_f = 0.87 m/s
Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
Answer:
B
Explanation:
Potential difference has a SI Unit of Volt and its symbol is <em>V</em>. Hence answer is <u>B</u>.
A is wrong as it has the unit Joule <em>(J)</em> which is the SI unit for energy.
C is wrong as it has the unit Newton <em>(N)</em> which is the SI unit for force.
D is wrong as it has the unit Coulomb <em>(C)</em> which is the SI unit of charge.