Answer:
magnitude of the resultant of forces is 11.45 N
Explanation:
given data
force F1 = 6N
force F2 = 8N
angle = 240°
solution
we get here resultant force that is express as
F(r) =
..............1
put here value and we get
F(r) = 
F(r) = 11.45 N
so magnitude of the resultant of forces is 11.45 N
Complete Question:
A purse at radius 2.00 m and a wallet at radius 3.00 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns.
They are on the same radial line. At one instant, the acceleration of the purse is (2.00 m/s2 ) i + (4.00 m/s2 ) j .At that instant and in unit-vector notation, what is the acceleration of the wallet
Answer:
aw = 3 i + 6 j m/s2
Explanation:
- Since both objects travel in uniform circular motion, the only acceleration that they suffer is the centripetal one, that keeps them rotating.
- It can be showed that the centripetal acceleration is directly proportional to the square of the angular velocity, as follows:

- Since both objects are located on the same radial line, and they travel in uniform circular motion, by definition of angular velocity, both have the same angular velocity ω.
∴ ωp = ωw (2)
⇒ 

- Dividing (4) by (3), from (2), we have:


I always thought that 'polygamy' refers to the social system in which a man
may have more than one wife, and I thought there's some other word for
where a woman is married to more than one man.
But when I went to look it up just now to answer your question, (which by the
way you could also have done very easily), I found a definition that says it's a
"state of marriage between many spouses". That doesn't specify genders, so
I guess it means any marriage that involves more than two people, no matter
how the genders may be represented or distributed within it.
The radius of the sphere in meters is ,r =
Think about the angle the ground and the shadow make. Since the sun's beams are parallel, the angle created by the stick's shadow is also equal. Since the stick is 1 m high and its shadow is 2 m long, we know that the stick's angle is arctan 1/2. Therefore, by thinking of a right-angled triangle,
r/10 = tan [arctan(1/2)] = tan (1/2)
Since, tan (θ/2) = 1-cos(θ) / sin(θ)
we find that,
r/10 = 
Hence, r = 
So, the radius of the sphere in meters is ,r =
Learn more about radius (r) of the sphere here;
brainly.com/question/14100787
#SPJ4