Answer:
720 V
Explanation:
Given that,
The number of turns in primary coil, N₁ = 60
The number of turns in secondary coil, N₂ = 360
The input rms voltage, V₁ = 120 V
We need to find the output rms voltage of the secondary coil
. The relation between number of turns in primary coil - secondary coil to the input rms voltage to the output rms voltage is given by :

<h3>So, the output rms voltage of the secondary coil is 720 V. Hence, the correct option is (b).</h3>
Answer:
D. Same
Explanation:
Because only gravity is doing the work on the objects, and gravity is constant for all the objects
Explanation:
a) The rope obeys Hooke's law, so:
F = k Δx
The elastic energy in the rope is:
EE = ½ k Δx²
Or, in terms of F:
EE = ½ F Δx
Use trigonometry to find the stretched length.
cos 20° = 35 / x
x = 37.25
So the displacement is:
Δx = 37.25 − 24
Δx = 13.25
The elastic energy per rope is:
EE = ½ (3.7×10⁴ N) (13.25 m)
EE = 245,000 J
There's two ropes, so the total energy is:
2EE = 490,000 J
Rounded to one significant figure, the elastic energy is 5×10⁵ J.
b) The elastic energy in the ropes is converted to gravitational energy.
EE = PE = mgh
5×10⁵ J = (1.2×10³ kg) (9.8 m/s²) h
h = 42 m
Rounded to one significant figure, the height is 40 m. So the claim is not justified.