Answer:
The presence of 1-2% ethanol as catalyst, suppresses the oxidation of chloroform with oxygen to give a poisonous gas called phosgene. ... Here glycerol acts as negative catalyst. Criteria or characteristics of catalysts. i. The mass and chemical composition of catalyst should remain unchanged at the end of the reaction.
Explanation:
D, the rate increases as concentrations increase.
Typically, reaction rates decrease with time because reactant concentrations decrease as reactions are converted to products. Reaction rates generally increase when reactant concentrations are increased.
Answer:
Mass = 279.23 g
Explanation:
Given data:
Number of moles of Fe₂O₃ = 3 mol
Number of moles of Al = 5 mol
Maximum amount of iron produced by reaction = ?
Solution:
Chemical equation:
Fe₂O₃ + 2Al → Al₂O₃ + 2Fe
Now we will compare the moles of iron with Al and iron oxide.
Fe₂O₃ : Fe
1 : 2
3 : 2×3 = 6 mol
Al : Fe
2 : 2
5 : 5 mol
The number of moles of iron produced by Al are less so Al is limiting reacting and it will limit the amount of iron so maximum number of iron produced are 5 moles.
Mass of iron:
Mass = number of moles × molar mass
Mass = 5 mol × 55.845 g/mol
Mass = 279.23 g
Answer : False, there will be two lithium and one oxygen atoms in a unit molecular structure of lithium oxide.
Explanation:
Electronic configuration of lithium is :

In order to attain stable electronic configuration it will loose an electron and form positively charge cation.

The electronic configuration of oxygen is:

Oxygen being second most electronegative atom requires two electrons to attain noble gas configuration stability and form negatively charge ion with 2- charge.:

When two atom of lithium and oxygen comes together , one electron from each lithium atom get transferred to an oxygen atom which results in formation of lithium oxide.

Since HCl04 is a strong acid, being [H+], and a molarity of 2.1 M.
To solve for pH:
pH = -log (M) = -log(2.1M) = -0.32, which is clearly a negative number.
However, to verify the answer, just use the pH meter in determining the pH of the solution.