Answer:
Explanation:
Electronegativity is a measure of the ability of an atom to attract the electrons when the atom is part of a compound. Electronegativity values generally increase from left to right across the periodic table. The highest electronegativity value is for fluorine.
Answer:
Decomposition
Explanation:
A decomposition reaction is a type of reaction in which a compound is broken down into its constituent elements sometimes under the influence of heat.
When iron (III) hydroxide is heated,new products are formed according to the equation; 2Fe(OH)3 -----------> Fe2O3 + 3H2O.
This is a thermal decomposition reaction.
Answer:There are three main properties of chemical bonds that must be considered—namely, their strength, length, and polarity. The polarity of a bond is the distribution of electrical charge over the atoms joined by the bond. Specifically, it is found that, while bonds between identical atoms (as in H2) are electrically uniform in the sense that both hydrogen atoms are electrically neutral, bonds between atoms of different elements are electrically inequivalent. In hydrogen chloride, for example, the hydrogen atom is slightly positively charged whereas the chlorine atom is slightly negatively charged. The slight electrical charges on dissimilar atoms are called partial charges, and the presence of partial charges signifies the occurrence of a polar bond.
Explanation:
Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation: